Math, asked by swuxxxx, 9 months ago

differentiate w.r.t 'x',
  {(sinx)}^{x}
+
 {sin}^{? - 1}  \sqrt{x}

Answers

Answered by BrainlyTornado
5

ANSWER:

y' = {(sinx)}^{x-1}  \left(x \: cos  \  x+sin \ x \: log(sin \ x)\right)+ \dfrac{1}{  \sqrt{1 - x}}

GIVEN:

{(sinx)}^{x} + {sin}^{ - 1} \sqrt{x}

TO DIFFERENTIATE:

{(sinx)}^{x} + {sin}^{ - 1} \sqrt{x}

FORMULAE USED:

  \dfrac{d}{dx} y = y'

 \log \ x^y = y \log \ x

 \dfrac{d}{dx} log \: x =  \dfrac{1}{x}

\dfrac{d}{dx}uv = uv'+ vu'

 \dfrac{ {x}^{y} }{{x}^{z} } = {x}^{y - z}

  \dfrac{d}{dx} ({sin}^{ - 1} x ) =  \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

EXPLANATION:

Let \ y = {(sinx)}^{x} + {sin}^{ - 1} \sqrt{x}

 Let \ A  = {(sinx)}^{x}

Let \ B ={sin}^{ - 1} \sqrt{x}

y = A + B

y' = A' + B'

 Take \  A  = {(sinx)}^{x}

Multiply by log on both sides

log\  A  = log{(sinx)}^{x}

log\  A  = x \ log(sinx)

Differentiate w.r.t x

\dfrac{d}{dx}log \ A = x\dfrac{d}{dx}log(sin \ x)+log(sin\ x)\dfrac{d}{dx}( x)

\dfrac{1}{A}(A' )= x \dfrac{1}{sin \ x}(cos \ x)+log(sin \ x)

A'=  A \left(\dfrac{x \: cos  \  x+sin \ x \: log(sin \ x)}{sin \ x} \right)

A'= {(sinx)}^{x}  \left(\dfrac{x \: cos  \  x+sin \ x \: log(sin \ x)}{sin \ x} \right)

A'= {(sinx)}^{x - 1}   \left(x \: cos  \  x+sin \ x \: log(sin \ x) \right)

Take \ B ={sin}^{ - 1} \sqrt{x}

Differentiate w.r.t x

  B' =  \dfrac{1}{ \sqrt{1 -{ (\sqrt{x}})^{2} } }

  B' =  \dfrac{1}{  \sqrt{1 - x}  }

y' = A' + B'

y' = {(sinx)}^{x-1}  \left(x \: cos  \  x+sin \ x \: log(sin \ x)\right)+ \dfrac{1}{  \sqrt{1 - x}} ]

Similar questions