Math, asked by ay5497368p821h9, 11 months ago

Differentiate w.r.t.x :
y  = \frac{ {x}^{2}sinx }{x + cosx}

Answers

Answered by allysia
1
Hey bud,

We have,

y = \frac{ {x}^{2} \sin \: x }{x + \cos \: x} \\

Using Lebnitz method for differentiating,

Where
d( \frac{u}{v} ) = \frac{vdu - udv}{ {v}^{2} } \\

substituing the values we have,

 \frac{ (x + \cos \: x)(d \sin \: x ) - \sin(x) (d(x + \cos \: x))}{ {(x + \cos(x)) }^{2} } \\ \\ = \frac{ \cos(x) (x + \cos(x) ) - \sin(x) (1 - \sin(x)) }{ {(x + \cos(x)) }^{2} } \\ \\ = \frac{x \cos(x) + { \cos }^{2}x - \sin \: x + { \sin }^{2} x }{ {(x + \cos(x)) }^{2} } \\ \\ = \frac{x \cos(x) - \sin(x) }{ {(x + { \cos}^{2} x)}^{2} }

Hence huh!
Similar questions