Differentiate w.r.t. x the function
sin³x + cos⁶x
Answers
Answered by
0
Answer:
y=sin³x + cos⁶x
dy/dx=2sin²x cox³x-6cos⁵xsin⁶x
Answered by
1
Step-by-step explanation:
Given: sin³x + cos⁶x
let y = sin³x + cos⁶x
Now, differentiating with respect to X.
dy/dx = d(sin³x + cos⁶x)/dx
dy/dx = d(sin³x)/dx + d(cos⁶x)/dx
dy/dx = 3 sin²x d(sinx)/dx + 6 (cos^5x)/ dx
dy/dx = 3 sin²x . cos x + 6 cos^5x .(-sinx)
dy/dx = 3 sin²x . cos x - 6 sinx cos^5x
dy/dx = 3 sinx . cos x ( sinx - 2 cos⁴x)
hence dy/dx = 3 sinx . cos x ( sinx - 2 cos⁴x)
Hope this will be helpful to you.... !!!!!
Similar questions