Math, asked by attharvshukla7, 9 months ago


Differentiate
w.r.t. x.
((x^2+1)/x)^1/2​

Answers

Answered by Anonymous
3

Question:

Differentiate w.r.t.x

 ({ \frac{ {x}^{2} + 1 }{x} })^{ \frac{1}{2} }

Answer:

Let,

y =  ({ \frac{ {x}^{2}  + 1}{x} })^{ \frac{1}{2} }  \\  \\ diff \: w.r.t.x \\  \\  \frac{dy}{dx}  =  \frac{1}{2}( { \frac{ {x}^{2} + 1 }{x} })^{ \frac{ - 1}{2} }  \frac{d}{dx} ( \frac{ {x}^{2} + 1 }{x} ) \\  \\  \frac{dy}{dx}  =  \frac{1}{2} ({ \frac{ {x}^{2} + 1 }{x} })^{ \frac{ - 1}{2} }  \times  \frac{x. \frac{d}{dx}( {x}^{2}  + 1) -(  {x}^{2}   + 1). \frac{d}{dx} (x)}{ {x}^{2} }  \\  \\  \frac{dy}{dx}  =  \frac{1}{2}( { \frac{ {x}^{2} + 1 }{x} })^{ \frac{ - 1}{2} }  \times  \frac{x.(2x )- ( {x}^{2} + 1)(1) }{ {x}^{2} }  \\  \\  \frac{dy}{dx}  =  \frac{1}{2} ({ \frac{ {x}^{2} + 1 }{x} })^{ \frac{ - 1}{2} }  \times  \frac{2 {x}^{2}  -  {x}^{2}  - 1}{ {x}^{2} }  \\  \\  \frac{dy}{dx}  =  \frac{1}{2} ({ \frac{ {x}^{2} + 1 }{x} })^{ \frac{ - 1}{2} } \times   \frac{ {x}^{2} - 1 }{ {x}^{2} }  \\  \\  \frac{dy}{dx}  =  \frac{1}{2}  (\frac{x}{ {x}^{2}  + 1}) ^{ \frac{1}{2} }  \times  \frac{ {x}^{2}   - 1}{ {x}^{2} }

Formula used:

 \star \:  \frac{d}{dx} ( {x}^{n} ) = n {x}^{n - 1}  \\  \\  \star \:  \frac{d}{dx} ( \frac{u}{v} ) =  \frac{v \frac{d}{dx} (u) - u \frac{d}{dx} (v)}{ {v}^{2} }

Similar questions