Math, asked by amanrajsingh856, 11 months ago

Differentiate w r yo 'x'
y=(x^(3)+1)/(x+1)

Answers

Answered by kaushik05
95

 \huge \boxed{ \red{ \mathfrak{solution}}}

Given:

 \bold{y =  \frac{ {x}^{3}  + 1}{x + 1}  }

First solve y.

 \star \: y =  \frac{ {x}^{3}  + 1}{x + 1}  \\  \\  \rightarrow \: y = \frac{  (x + 1)(x {}^{2}  - x +  {1}^{2} )}{x + 1}  \\  \\  \star \: y =  \frac{ \cancel{(x + 1)}( {x}^{2}  - x + 1)}{ \cancel{x + 1}}  \\  \\  \rightarrow \: y =  {x}^{2}  - x + 1

Now differentiate w.r.t X both sides,

 \star \:  \frac{dy}{dx}  =  \frac{d}{dx} ( {x}^{2}  - x + 1) \\  \\  \star \:  \frac{dy}{dx}  = 2 {x}^{2 - 1}  - 1 {x}^{1 - 1}  + 0 \\  \\  \star \frac{dy}{dx}  = 2x - 1

Formula used :

 \red \star  \boxed{ \bold{ {a}^{3}   +  {b}^{3}  = (a + b)( {a}^{2}  - ab +  {b}^{2} )}}

 \green \star \:   \bold{\frac{d}{dx} ( {x}^{y} ) = y {x}^{y - 1} }

  \pink\star  \boxed{\bold{\frac{d}{dx} (constant) = 0}}


Anonymous: Awesome
Similar questions