Math, asked by debasak1047, 7 months ago

Differentiate with respect to x 2√cot(X²)

Answers

Answered by Asterinn
4

 \implies  \bf  \dfrac{ d(2\sqrt{cot \:  {x}^{2}} \: ) }{dx}

 \implies \sf 2 \times\dfrac{1}{2}  \times   {(cot \:  {x}^{2})}^{ \frac{ - 1}{2} }   \times \dfrac{ d({cot \:  { {x}^{2} }} \: ) }{dx}

We know that :-

 \underline{ \boxed{\bf  \dfrac{ d({cot \:  {t}} \: ) }{dt}  = -  \:  {csc}^{2} t}}

\implies \sf 2 \times \dfrac{1}{2{(cot \:  {x}^{2})}^{ \frac{ 1}{2} } }       \times \:  -  {csc}^{2} {x}^{2} \:   \times 2x

\implies \sf  - \dfrac{2x \: {csc}^{2} {x}^{2}}{{(cot \:  {x}^{2})}^{ \frac{ 1}{2} } }

\implies \sf \dfrac{ -2 x \: {csc}^{2}{x}^{2} }{ \sqrt{cot \:  {x}^{2}} }

Answer :

 \bf\dfrac{ d(\sqrt{cot \:  {x}^{2}} \: ) }{dx}  = \dfrac{ - 2x \: {csc}^{2} {x}^{2}}{ \sqrt{cot \:  {x}^{2}} }

______________________

\large\bf\blue{Additional-Information}

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

Answered by Anonymous
6

Hey There

Here's The Answer

________________________

Reffer to the Attachment.

Hope it Helps.

Attachments:
Similar questions