Math, asked by nuzhatraza86586, 1 month ago

differentiate with respect to X☝️​

Attachments:

Answers

Answered by ajr111
3

Answer:

\frac{\sqrt{1+cosx} }{2}

Step-by-step explanation:

Before Differentiating, let us multiply numerator and denominator with

\sqrt{1 - cosx} as there would be no change

So, now the equation turns,

\frac{\sin x}{\sqrt{1 + cosx}} = \frac{sinx}{\sqrt{1+cosx}} \times \frac{\sqrt{1 - cosx}}{\sqrt{1-cosx}}

=> \frac{sinx \times \sqrt{1-cosx}}{\sqrt{1 - cos^2x}}

=> \frac{sinx \times \sqrt{1 - cosx}}{\sqrt{sin^2x}}  ---- [1 - cos^2x = sin^2x]

=> \frac{sinx \times \sqrt{1 - cosx}}{sinx}

=> \sqrt{1 - cosx}

Now, differentiating √(1 - cosx) , we get,

\frac{d}{dx}(\sqrt{1 - cosx} )  = \frac{1}{2\sqrt{1 -cosx} } \times \frac{d}{dx}(-cosx)  \\\\=> \frac{sinx}{2\sqrt{1 - cosx} }\ or\  \frac{\sqrt{1+cosx} }{2}

Hope it helps

Please mark as brainliest

Similar questions