Math, asked by alaganikavya, 1 month ago

differentiate with respect to x​

Attachments:

Answers

Answered by naveenbhatt354
0

Answer:

1/2.1/√sec√xsec√xtan√x.1/2√x

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

To differentiate,

\red{\rm :\longmapsto\: \sqrt{sec \sqrt{x} } }

Let assume that

\rm :\longmapsto\:y =  \sqrt{sec \sqrt{x} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} \sqrt{sec \sqrt{x} }

We know,

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x}  =  \frac{1}{2 \sqrt{x} }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{1}{2 \sqrt{sec \sqrt{x} } }  \dfrac{d}{dx} {sec \sqrt{x} }

We know,

\boxed{ \rm{ \dfrac{d}{dx}secx = secx \: tanx}}

So, using this,

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{1}{2 \sqrt{sec \sqrt{x} } }   {sec \sqrt{x} } \:  tan \sqrt{x} \dfrac{d}{dx} \sqrt{x}

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{1}{2 \sqrt{sec \sqrt{x} } } {( \sqrt{sec \sqrt{x} } ) \: }^{2} \:  tan \sqrt{x} \dfrac{d}{dx} \sqrt{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} \sqrt{sec \sqrt{x} }  \: tan \sqrt{x}  \times \dfrac{1}{2 \sqrt{x} }

\bf\implies \:\dfrac{dy}{dx} = \dfrac{tan \sqrt{x}  \:  \sqrt{sec \sqrt{x} } }{4 \sqrt{x} }

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

\boxed{ \rm{ \dfrac{d}{dx}cosx =  - sinx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =  { - cosec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx \:  =  \:  -  \: cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx}logx =  \frac{1}{x}}}

Similar questions