Math, asked by Anonymous, 5 days ago

Differentiate with respect to x ​

Attachments:

Answers

Answered by sajan6491
4

 \large \bold \red{ \frac{d}{dx}  \bigg( \bigg( \frac{32 {}^{ \frac{1}{9}} 243 {}^{ \frac{8}{9} } }{243}  \bigg) {}^{ \sqrt{x - 5} }  \bigg)}

Rewrite

Equivalent expressions

 {\large \bold \red{ \frac{}{}  \bigg( \big \frac{32 {}^{ \frac{1}{9}} 243 {}^{ \frac{8}{9} } }{243}  \bigg) {}^{ \sqrt{x - 5} }  = e {}^{ \sqrt{x - 5}In \bigg( \frac{32 {}^{\frac{1}{9} } 243 {}^{ \frac{8}{9} } }{243} \bigg) } }}

This gives:

 { \boxed{ \large \bold \red{\frac{d}{dx}e {}^{ \sqrt{x - 5}In \bigg( \frac{32 {}^{\frac{1}{9} }243 {}^{ \frac{8}{9} }  }{243} \bigg)}}}}

Apply the chain rule to the term \bold{e {}^{ \sqrt{x - 5}In ( \frac{32 {}^{\frac{1}{9} }243 {}^{ \frac{8}{9} }  }{243})}}

Recall the definition of chain rule

 \bold \red{\frac{d}{dx} f(g(x)) = f'(g(x)) \frac{d}{dx} g(x)}

Outside function

 \bold \red{f(v) =  {e}^{v}}

Inside function

 \bold \red{g(x) =  \sqrt{x - 5} }

 \bold \red{g(x) =  \sqrt{x - 5} In \bigg( \frac{32 {}^{ \frac{1}{9}}243 {}^{ \frac{8}{9} } }{243}  \bigg)}

Derivative of outside function

   \bold \red{\frac{d}{dv} f(v) =  {e}^{v}}

Apply composition

 \bold \red{f'(g(x)) = e {}^{ \sqrt{x - 5} In( \frac{32 {}^{ \frac{1}{9} } 243 {}^{ \frac{8}{9} } }{243} )}}

Derivative of inside function

  \bold \red{\frac{d}{dx} g(x) =  \frac{In \bigg( \frac{32 {}^{ \frac{1}{9} }243 {}^{ \frac{8}{9} }  }{243} \bigg) }{2 \sqrt{x - 2} } }

Put it all together

\bold\red{\frac{d}{dx} f(g(x)) \frac{d}{dx} g(x) = e {}^{ \sqrt{x - 5} }}

 {\bold \red{\frac{d}{dx} f(g(x)) \frac{d}{dx} g(x) = e {}^{ \sqrt{x - 5} In( \frac{32 {}^{ \frac{1}{9} } 243 {}^{ \frac{8}{9} } }{243} )} \times   \bigg(\frac{In \bigg( \frac{32 {}^{ \frac{1}{9} }243 {}^{ \frac{8}{9} }  }{243} \bigg) }{2 \sqrt{x - 2} } \bigg)}}

This gives:

  {\boxed{\bold \red{\frac{e {}^{ \sqrt{x - 5}In( \frac{32 {}^{ \frac{1}{9} }243 {}^{ \frac{8}{9}}}{243} ) }In \bigg( \frac{32 {}^{ \frac{1}{9} }243 {}^{ \frac{8}{9} }  }{243}   \bigg)}{2 \sqrt{x - 5} }}}}

Answered by mathdude500
4

Given Question :-

Evaluate the following

\rm :\longmapsto\:\dfrac{d}{dx} {\bigg[\dfrac{ {32}^{ \frac{1}{9}} \times  {243}^{ \frac{8}{9} } }{243} \bigg]}^{ \sqrt{x - 5} }

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:y =  {\bigg[\dfrac{ {32}^{ \frac{1}{9}} \times  {243}^{ \frac{8}{9} } }{243} \bigg]}^{ \sqrt{x - 5} }

We know,

\boxed{ \tt{ \:  \frac{ {x}^{m} }{ {x}^{n} }  =  {x}^{m - n}  \: }}

So, using this identity we get

\rm :\longmapsto\:y =  {\bigg[\dfrac{ {32}^{ \frac{1}{9}} }{ {(243)}^{1 -  \frac{8}{9} } } \bigg]}^{ \sqrt{x - 5} }

\rm :\longmapsto\:y =  {\bigg[\dfrac{ {32}^{ \frac{1}{9}} }{ {(243)}^{\frac{9 - 8}{9} } } \bigg]}^{ \sqrt{x - 5} }

\rm :\longmapsto\:y =  {\bigg[\dfrac{ {32}^{ \frac{1}{9}} }{ {(243)}^{\frac{1}{9} } } \bigg]}^{ \sqrt{x - 5} }

We know

\boxed{ \tt{ \:  \frac{ {x}^{m} }{ {y}^{m} }  =  \bigg[\dfrac{x}{y} \bigg]^{m}  \: }}

So, using this, we get

\rm :\longmapsto\:y =  {\bigg[\dfrac{32}{243} \bigg]}^{\dfrac{ \sqrt{x - 5} }{9}}

\rm :\longmapsto\:y =  {\bigg[\dfrac{ {2}^{5} }{ {3}^{5} } \bigg]}^{\dfrac{ \sqrt{x - 5} }{9}}

\rm :\longmapsto\:y =  {\bigg[\dfrac{2}{3} \bigg]}^{\dfrac{5 \sqrt{x - 5} }{9}}

On differentiating both sides w .r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {\bigg[\dfrac{2}{3} \bigg]}^{\dfrac{5 \sqrt{x - 5} }{9}}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {a}^{x} \:  =  \:  {a}^{x} \: loga \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = {\bigg[\dfrac{2}{3} \bigg]}^{\dfrac{5 \sqrt{x - 5} }{9}} log\bigg[\dfrac{2}{3} \bigg] \: \dfrac{d}{dx}\bigg[\dfrac{5 \sqrt{x - 5} }{9} \bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{5}{9} \times  {\bigg[\dfrac{2}{3} \bigg]}^{\dfrac{5 \sqrt{x - 5} }{9}} log\bigg[\dfrac{2}{3} \bigg] \: \dfrac{d}{dx} \sqrt{x - 5}

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{5}{9} \times  {\bigg[\dfrac{2}{3} \bigg]}^{\dfrac{5 \sqrt{x - 5} }{9}} log\bigg[\dfrac{2}{3} \bigg] \: \dfrac{1}{2 \sqrt{x - 5} }

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{5}{18} \times  {\bigg[\dfrac{2}{3} \bigg]}^{\dfrac{5 \sqrt{x - 5} }{9}} log\bigg[\dfrac{2}{3} \bigg] \: \dfrac{1}{\sqrt{x - 5} }

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{5}{18 \sqrt{x - 5} } \times  {\bigg[\dfrac{2}{3} \bigg]}^{\dfrac{5 \sqrt{x - 5} }{9}} log\bigg[\dfrac{2}{3} \bigg]

Therefore,

 \red{\boxed{ \tt{ \: \dfrac{dy}{dx} =\dfrac{5}{18 \sqrt{x - 5} } \times  {\bigg[\dfrac{2}{3} \bigg]}^{\dfrac{5 \sqrt{x - 5} }{9}} log\bigg[\dfrac{2}{3} \bigg] \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions