Math, asked by NikitaGurung, 2 months ago

Differentiate with respect to 'x': i)x(x+5)/(x-1)(x+2). Please solve it​

Answers

Answered by Anonymous
393

\dag\:\underline{\sf AnsWer :}

\dashrightarrow\:\:\sf   \dfrac{x(x + 5)}{(x - 1)(x + 2)}  \\

\dashrightarrow\:\:\sf   \dfrac{ {x}^{2}  + 5x}{ {x}^{2}  + 2x - x - 2}  \\

\dashrightarrow\:\:\sf \dfrac{ {x}^{2}  + 5x}{ {x}^{2}   + x - 2}  \\

\dag \: \underline{\textbf{By using Division Rule :}} \\

\dashrightarrow\:\:\sf  \dfrac{dy}{dx}  =  \dfrac{d}{dx} \bigg( \dfrac{u}{v} \bigg) =  \dfrac{(v) \dfrac{d}{dx}(u) - (u) \dfrac{d}{dx}(v)}{ {v}^{2} }   \\

\dashrightarrow\:\:\sf  \dfrac{d}{dx}   \bigg( \dfrac{ {x}^{2}  + 5x}{ {x}^{2}   +  x - 2}  \bigg) \\

\dashrightarrow\:\:\sf  \dfrac{dy}{dx}  =  \dfrac{d}{dx} \bigg( \dfrac{ {x}^{2}  + 5x}{ {x}^{2}   +   x - 2} \bigg) =  \dfrac{({x}^{2}  +  x - 2) \dfrac{d}{dx}({x}^{2}  + 5x)  -  ({x}^{2}  + 5x) \dfrac{d}{dx}({x}^{2}   +   x - 2)}{ {( {x}^{2}  + x - 2) }^{2} }   \\

\dashrightarrow\:\:\sf \dfrac{( {x}^{2}  + x - 2)(2x + 5) - ( {x}^{2}  + 5x)(2x + 1)}{( {x}^{2}  + x - 2)^{2} } \\

\dashrightarrow\:\:\sf \dfrac{(  {2x}^{3} +  {2x}^{2} - 4x   +  {5x}^{2}  + 5x - 10)- ( {2x}^{3}   +  {10x}^{2}  +  {x}^{2}  + 5x)}{( {x}^{2}  + x - 2)^{2} } \\

\dashrightarrow\:\:\sf \dfrac{(  {2x}^{3} +  {7x}^{2}  + x - 10)- ( {2x}^{3}   +  {11x}^{2}    + 5x)}{( {x}^{2}  + x - 2)^{2} } \\

\dashrightarrow\:\:\sf \dfrac{ {2x}^{3} +  {7x}^{2}  + x - 10-  {2x}^{3}  - {11x}^{2} - 5x}{( {x}^{2}  + x - 2)^{2} } \\

\dashrightarrow\:\: \underline{ \boxed{\frak{\dfrac{  { - 4x}^{2}   - 4 x - 10}{( {x}^{2}  + x - 2)^{2} }}}} \\


Anonymous: Fabulous! :D
Anonymous: Thanks ! :fb_wow:
Answered by BrainlyThunder
35

{\bf{\underline{\underline{ANSWER\:IN\:THE\:ATTACHMENT}}}}

Thank You !

Attachments:

Anonymous: Good!
Similar questions