Differentiate with respect to x :
If y = sin-1 ( 2x / 1 + x2 ) + sec-1 ( 1 + x2 / 1 - x2 ) , show that dy/dx = 4 / ( 1 + x2 )
Answers
Answered by
2
Let y = sin {(1-x^2)/(1+x^2)}
dy/dx =cos {(1-x^2)/(1+x^2)}d/dx{(1-x^2)/(1+x^2)(applying chain rule)
= cos{(1-x^2)/(1+x^2)}{(1+x^2)(-2x)-(1-x^2)(2x)}/(1+x^2)^2
= cos{(1-x^2)/(1+x^2)}{-2x-2x^3 - 2x+2x^3}/(1+x^2)^2
= cos{(1-x^2)/(1+x^2)}{-4x/(1+x^2)^2}
** We know ; d/dx (sinx) = cosx and
d/dx(u/v) = (v*uā -y*vā)/v^2
Similar questions