Math, asked by dssd7872, 1 year ago

Differentiate with respect to x :

sec-1 ( x2 + 1 / x2 - 1 )

The answer: -2 / ( 1 + x2 )

Answers

Answered by MaheswariS
35

Answer:


Step-by-step explanation:

Concept:


sec^{-1}x=\pi-sec^{-1}x\\\\cos2A= \frac{1-tan^2\theta}{1+tan^2\theta}



y=sec^{-1}[\frac{x^2+1}{x^2-1}]\\\\y=sec^{-1}[-(\frac{1+x^2}{1-x^2})]\\\\y=\pi-sec^{-1}[(\frac{1+x^2}{1-x^2})]


take

x=tan\theta\\\theta=tan^{-1}x\\\\y=\pi-sec^{-1}[(\frac{1+tan^2\theta}{1-tan^2\theta})]\\\\y=\pi-sec^{-1}[\frac{1}{\frac{1-tan^2\theta}{1+tan^2\theta}}]\\\\y=\pi-sec^{-1}[\frac{1}{cos2\theta}]\\\\y=\pi-sec^{-1}[sec2\theta]\\\\y=\pi-2\theta\\\\y=\pi-2tan^{-1}x


differentiate with respect to x


\frac{dy}{dx}=-2(\frac{1}{1+x^2})\\\\\frac{dy}{dx}=\frac{-2}{1+x^2}



Answered by JBJ919
1

Answer:

your answer is this

Attachments:
Similar questions