Differentiate with respect to x secx-1/secx+1
Answers
Answered by
13
y = [sec x-1] / [sec x+1]
y = [sec x + 1 -1 -1] / [sec x+1]
y = 1 - 2 / [sec x+1]
y = 1 - 2 cos x / [cos x + 1]
dy/dx = - 2 [- sin x (1+cos x) - (- sin x) cos x] / (1+cos x)^2
dy/dx = - 2 [- sin x - sin x cos x + sin x cos x] / (1+cos x)^2
dy/dx = - 2 [- sin x ] / (1+cos x)^2
dy/dx = 2 sin x / (1+cos x)^2
=====================================
how it is same as that of Hemant below
2 sin x / (1+cos x)^2 = 2*2 sin x/2 cos x/2 / 4 cos^4 x/2
2 sin x / (1+cos x)^2 = sin x/2 /cos^3 x/2
2 sin x / (1+cos x)^2 = tan x/2 * sec^2 x/2 = Hemant's
bro,u seriously in primary school
y = [sec x + 1 -1 -1] / [sec x+1]
y = 1 - 2 / [sec x+1]
y = 1 - 2 cos x / [cos x + 1]
dy/dx = - 2 [- sin x (1+cos x) - (- sin x) cos x] / (1+cos x)^2
dy/dx = - 2 [- sin x - sin x cos x + sin x cos x] / (1+cos x)^2
dy/dx = - 2 [- sin x ] / (1+cos x)^2
dy/dx = 2 sin x / (1+cos x)^2
=====================================
how it is same as that of Hemant below
2 sin x / (1+cos x)^2 = 2*2 sin x/2 cos x/2 / 4 cos^4 x/2
2 sin x / (1+cos x)^2 = sin x/2 /cos^3 x/2
2 sin x / (1+cos x)^2 = tan x/2 * sec^2 x/2 = Hemant's
bro,u seriously in primary school
Answered by
6
secx-1/secx+1
Using quotient rule
f(x) =[ secx+1 d/dx(secx-1)- secx-1 d/dx(secx+1)] / (secx+1)^2
=secx+1(secxtanx-0)- secx-1(secxtanx+0) / (secx+1)^2
=sec^2xtanx+ secxtanx-secx^2tanx+secxtanx
= 2secxtanx/ (secx+1)^2
Similar questions