Math, asked by ninad160, 9 months ago

Differentiate with respect to x
 {e}^{ log(  { log(x) }^{2} -   { logx }^{2}  ) }
This is the question ,please solve it.....​

Answers

Answered by Anonymous
49

Answer:-

Let us consider Y as,

e  { }^{log} {}^{(logx {}^{2)} - logx {}^{2}  }

Now, Differentiate both the sides with x² we'll get,

dy/ dx= [ here we have substituted the value of x and y]

 \frac{d \: (e {}^{log(logx) {}^{2}  - logx {}^{2} )} }{d \: (log {}^{(} logx {}^{2} )} \:  \times  \frac{d \: (log(log) {}^{2} - log \: x {}^{2}  }{dx }

Now,

e  {}^{log(logx) {}^{2 - log \ x {}^{2} } } \times ( \frac{d \: (log)(log \: x {}^{2}) }{d \: (logx) {}^{2} }   \times  \frac{d \: (log \: x) {}^{2} }{d \:( logx)}  \times  \frac{d \: logx}{dx}    -  \frac{d \: (log \: x {}^{2}) }{dx {}^{2} }  \times  \frac{dx {}^{2} }{dx}

Also, [cancle out log x)

(  \frac{1}{(logx) {}^{2} }  \times 2logx \:  \times  \frac{1}{2x} .2x)

Also,

 \frac{2}{x}( \frac{1}{logx}  - 1)

Thus, dx/dy ( Taking common log x) will be

( \frac{2}{x}( \frac{1 - log \: x}{log \: x} )


vikram991: Awesome Answer :Cookie_Rock:
Answered by AdorableMe
24

Given expression :-

\sf{e^{log[log(x)^2-logx^2]}}

OR

\sf{e^{ln[ln(x^2)-ln^2(x)]}}

Objective :-

To differentiate the given expression with respect to x.

Solution :-

Let

\sf{y=e^{ln[ln(x^2)-ln^2(x)]}}

Solving y by using logarithm laws, we get :-

\bf{y=2\ ln(x)-ln^2(x)}

Now, differentiating y with respect to x :-

\displaystyle \sf{\frac{dy}{dx} =\frac{d}{dx}[2\ ln(x)-ln^2(x)] }\\\\

\displaystyle \sf{\to \frac{dy}{dx}= 2.\frac{d}{dx}[ln(x)]-\frac{d}{dx}[ln^2(x)]  }

  • Derivative of ln(x) is 1/x.

\displaystyle \sf{\to \frac{dy}{dx}= 2.\frac{1}{x}-2\ ln(x).\frac{d}{dx}[ln(x)]  }

  • Derivative of ln(x) is 1/x.

\displaystyle \sf{\to \frac{dy}{dx}= \frac{2}{x}-2\ ln(x).\frac{1}{x}  }\\\\\displaystyle \sf{\to \frac{dy}{dx}=  \dfrac{2}{x}-\dfrac{2\ln\left(x\right)}{x}}\\\\\boxed{\displaystyle \bf{\to \frac{dy}{dx}=-\dfrac{2\ln\left(x\right)-2}{x}}}

______________________

Linear differentiation :-

[ a.b(x) + c.d(x) ]' = a.b' (x) + c.d' (x)

Power rule (Chain rule applied) :-

[ a(x)ⁿ ]' = n.a(x)ⁿ⁻¹ . a'(x)

Similar questions