Math, asked by talpadadilip417, 1 day ago

​Differentiate With Respect to X.
 \purple{ \boxed{ \tt\pink{\bold{y=x^{x} \cdot \sin x+(\sin x)^{x}}}}}
don't spam.
answer with full explanation.​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y=x^{x} \cdot \sin x+(\sin x)^{x}

Let assume that

\rm :\longmapsto\:y = u + v

So, that

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx} -  -  -  - (1)

where,

\rm :\longmapsto\:u =  {x}^{x} \: sinx -  -  -  - (2)

and

\rm :\longmapsto\:v =  {(sinx)}^{x}  -  -  -  - (3)

Now, Consider

\rm :\longmapsto\:u =  {x}^{x} \: sinx

Taking log on both sides, we get

\rm :\longmapsto\:logu =  log[{x}^{x} \: sinx]

\rm :\longmapsto\:logu =  xlogx + logsinx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logu =\dfrac{d}{dx}[  xlogx + logsinx]

We know,

\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x}}} \\  \\ \boxed{\tt{ \dfrac{d}{dx}uv = u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u}} \\

So, using this result, we get

\rm :\longmapsto\:\dfrac{1}{u}\dfrac{du}{dx} = x\dfrac{d}{dx}logx + logx\dfrac{d}{dx}x + \dfrac{1}{sinx}\dfrac{d}{dx}sinx

\rm :\longmapsto\:\dfrac{1}{u}\dfrac{du}{dx} = x \times \dfrac{1}{x}+ logx \times 1+ \dfrac{1}{sinx}(cosx)

\rm :\longmapsto\:\dfrac{1}{u}\dfrac{du}{dx} = 1+ logx + cotx

\rm :\longmapsto\:\dfrac{du}{dx} = u\bigg[1+ logx + cotx\bigg]

 \red{\rm\implies \:\dfrac{du}{dx} =  {x}^{x}sinx \bigg[1+ logx + cotx\bigg] -  -  - (4)}

Now, Consider

\rm :\longmapsto\:v =  {(sinx)}^{x}

On taking log on both sides, we get

\rm :\longmapsto\:logv = log {(sinx)}^{x}

\rm :\longmapsto\:logv = x \: log {(sinx)}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logv =\dfrac{d}{dx}( x \: log {(sinx)})

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = x\dfrac{d}{dx}logsinx + logsinx\dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = x \times \dfrac{1}{sinx}\dfrac{d}{dx}sinx + logsinx \times 1

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} =  \dfrac{x}{sinx}(cosx) + logsinx

\rm :\longmapsto\: \dfrac{dv}{dx} =  v\bigg[x \: cotx + logsinx\bigg]

 \green{\rm\implies \: \dfrac{dv}{dx} =   {(sinx)}^{x} \bigg[x \: cotx + logsinx\bigg] -  -  - (5)}

On substituting equation (4) and (5) in equation (1), we get

 \purple{\rm :\longmapsto\:\dfrac{dy}{dx} = {x}^{x}sinx \bigg[1+ logx + cotx\bigg] + {(sinx)}^{x} \bigg[x \: cotx + logsinx\bigg]}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{ \dfrac{d}{dx} {x}^{y}  = y \: logx}}

\boxed{\tt{ \dfrac{d}{dx}sinx = cosx}}

\boxed{\tt{ \dfrac{d}{dx}cosx = - sinx}}

\boxed{\tt{ \dfrac{d}{dx}x = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by gops2k4
1

Answer:

Step-by-step explanation:

Let u= x^{x}sinx and v= (sinx)^{x}

logu = log(x^{x} sinx) =log(x^{x}) + log(sinx) =xlogx + log(sinx)\\\frac{1}{u}\frac{du}{dx}= 1(logx)+\frac{x}{x} + \frac{1}{sinx}  cosx = logx+ 1+ cotx\\ \frac{du}{dx} = (x^{x} sinx)(logx+ 1+ cotx)

log v = xlog(sinx)\\\frac{1}{v} \frac{dv}{dx}  = 1[log(sinx)] + x(\frac{1}{sinx} cosx) = log(sinx) + xcotx\\\frac{dv}{dx}=(sinx)^{x} (log(sinx) + xcotx)

\frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}\\=(x^{x}sinx)(logx+1+cotx) +(sinx)^{x}[log(sinx) + xcotx)

Similar questions