Math, asked by alaganikavya, 15 days ago

differentiate with respect to x using chain rule​

Attachments:

Answers

Answered by naveenbhatt354
0

Answer:

2sin(2x+3) cos(2x+3)2

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

To differentiate

\rm :\longmapsto\: {sin}^{2}(2x + 3)

Let assume that,

\rm :\longmapsto\:y =  {sin}^{2}(2x + 3)

can be rewritten as

\rm :\longmapsto\:y =  {\bigg(sin(2x + 3)\bigg) }^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y = \dfrac{d}{dx}  {\bigg(sin(2x + 3)\bigg) }^{2}

We know,

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

So, using this,

\rm :\longmapsto\:\dfrac{dy}{dx} =2 {\bigg(sin(2x + 3)\bigg) }^{2 - 1}\dfrac{d}{dx}sin(2x + 3)

We know,

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =2 {\bigg(sin(2x + 3)\bigg) }^{1}cos(2x + 3)\dfrac{d}{dx}(2x + 3)

We know,

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

and

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\rm :\longmapsto\:\dfrac{dy}{dx} =2 {sin(2x + 3) }cos(2x + 3)(2 \times 1 + 0)

We know,

\boxed{ \rm{ sin2x = 2sinx \: cosx}}

\rm :\longmapsto\:\dfrac{dy}{dx} = sin2(2x + 3) \times 2

\bf\implies \:\dfrac{dy}{dx} = 2sin(4x + 6)

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}cosx =  - sinx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =  { - cosec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}secx  =  \: secx \: tanx}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx  =  -  \: cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx} {e}^{x}  =  {e}^{x} }}

Similar questions