Math, asked by alaganikavya, 2 months ago

differentiate with respect to x using chain rule​

Attachments:

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:log \: sin( \sqrt{cosx} \:  )

Let we assume that

\rm :\longmapsto\:y \:  =  \: log \: sin( \sqrt{cosx} \:  )

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y \:  = \dfrac{d}{dx} \: log \: sin( \sqrt{cosx} \:  )

We know,

\boxed{ \rm{ \dfrac{d}{dx}logx \:  =  \:  \frac{1}{x}}}

Using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{sin \sqrt{cosx} }\dfrac{d}{dx}sin (\sqrt{cosx} )

We know,

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

Using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{sin \sqrt{cosx} }\cos (\sqrt{cosx} )\dfrac{d}{dx} \sqrt{cosx}

We know,

\boxed{ \rm{  \frac{cosx}{sinx} = cotx}}

and

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}

Using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = cot( \sqrt{cosx}) \times \dfrac{1}{2 \sqrt{cosx} } \dfrac{d}{dx}cosx

We know,

\boxed{ \rm{ \dfrac{d}{dx}cosx =  -  \: sinx}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =   \dfrac{cot( \sqrt{cosx})}{2 \sqrt{cosx} } ( - sinx)

\bf :\longmapsto\:\dfrac{dy}{dx} =   \dfrac{ -  \: sinx \: cot( \sqrt{cosx})}{2 \sqrt{cosx} }

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} }}

\boxed{ \rm{ \dfrac{d}{dx} {e}^{x} =  {e}^{x}}}

\boxed{ \rm{ \dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx  \: =    \: - \:  {cosec}^{2}x}}

Answered by jaleel123
0

Answer:

The above answer is right

Similar questions