Math, asked by alaganikavya, 1 month ago

differentiate with respect to x using chain rule​

Attachments:

Answers

Answered by raisanjeet8896
0

Step-by-step explanation:

step by step solution is in the taken snapshot..

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:log( \: x +  \sqrt{ {x}^{2}  - 1} \: )

Let assume that

\rm :\longmapsto\:y \:  =  \: log( \: x +  \sqrt{ {x}^{2}  - 1} \: )

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y \:  =\dfrac{d}{dx}  \: log( \: x +  \sqrt{ {x}^{2}  - 1} \: )

We know,

\boxed{ \rm{\dfrac{d}{dx} \: logx  \: =  \:  \frac{1}{x}}}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2} - 1 } }\dfrac{d}{dx}( \: x +  \sqrt{ {x}^{2}  - 1} \: )

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2} - 1 } }\bigg(\dfrac{d}{dx} \: x +  \dfrac{d}{dx}\sqrt{ {x}^{2}  - 1} \: \bigg)

We know,

\boxed{ \rm{ \dfrac{d}{dx} \: x  \: = \:  1}}

and

\boxed{ \rm{ \dfrac{d}{dx} \:  \sqrt{x}   \: = \:   \frac{1}{2 \sqrt{x} } }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  - 1} }\bigg(1 + \dfrac{1}{2 \sqrt{ {x}^{2} - 1}}\dfrac{d}{dx}( {x}^{2} - 1)\bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  - 1} }\bigg(1 + \dfrac{1}{2 \sqrt{ {x}^{2} - 1}}(2x - 0)\bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  - 1} }\bigg(1 + \dfrac{1}{2 \sqrt{ {x}^{2} - 1}}(2x)\bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  - 1} }\bigg(1 + \dfrac{1}{ \sqrt{ {x}^{2} - 1}}(x)\bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  - 1} }\bigg(1 + \dfrac{x}{ \sqrt{ {x}^{2} - 1}}\bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  - 1} }\bigg(\dfrac{ \sqrt{ {x}^{2}  - 1}  + x}{ \sqrt{ {x}^{2} - 1}}\bigg)

\bf :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{ {x}^{2}  - 1} }

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} }}

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

\boxed{ \rm{ \dfrac{d}{dx}cosx =  -  \: sinx}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx}secx =  \: secx \: tanx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =   - {cosec}^{2}x}}

Similar questions