Math, asked by alaganikavya, 1 month ago

differentiate with respect to x using chain rule​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {tan}^{ - 1}\bigg(\dfrac{x - a}{1 + xa} \bigg)

Let assume that,

\rm :\longmapsto\: y \:  =  \: {tan}^{ - 1}\bigg(\dfrac{x - a}{1 + xa} \bigg)

We know that,

\green{\boxed{ \bf{ {tan}^{ - 1}x  -  {tan}^{ - 1}y = {tan}^{ - 1}\bigg(\dfrac{x - y}{1 + xy}  \bigg) }}}

So, using this identity we get

\rm :\longmapsto\:y = {tan}^{ - 1}x - {tan}^{ - 1}a

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}( {tan}^{ - 1}x - {tan}^{ - 1}a)

We know,

\green{\boxed{ \bf{ \dfrac{d}{dx}(u + v) =  \dfrac{d}{dx}u+ \dfrac{d}{dx}v}}}

So, using this we get

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx}{tan}^{ - 1}x - \dfrac{d}{dx}{tan}^{ - 1}a

We know that,

\boxed{ \rm{ \dfrac{d}{dx}{tan}^{ - 1}x =  \frac{1}{1 +  {x}^{2} } }}

and

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{1 +  {x}^{2} } - 0

\bf :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{1 +  {x}^{2} }

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}{sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } } }}

\boxed{ \rm{ \dfrac{d}{dx}{cos}^{ - 1}x =  \frac{ -  \: 1}{ \sqrt{1 -  {x}^{2} } } }}

\boxed{ \rm{ \dfrac{d}{dx}{cosec}^{ - 1}x =  \frac{ -  \: 1}{x \sqrt{ {x}^{2} - 1 } } }}

\boxed{ \rm{ \dfrac{d}{dx}{sec}^{ - 1}x =  \frac{ \: 1}{x \sqrt{ {x}^{2} - 1 } } }}

\boxed{ \rm{ \dfrac{d}{dx}{cot}^{ - 1}x =  \frac{ -  \: 1}{ {x}^{2}  + 1} }}

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

\boxed{ \rm{ \dfrac{d}{dx}cosx =  - sinx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2} x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =  { -  \: cosec}^{2} x}}

Similar questions