differentiate with respect to X (x+1)^2/
(x+2)^3 (x+3)^4
Answers
Answered by
0
Answer:
N/A
Step-by-step explanation:
HOPE YOU UNDER STOOD, MARK AS BRAIN LIST
Solution: Let y=(x+1)2(x+2)3(x+3)4
∴logy=log{(x+1)2.(x+2)3(x+3)4}
=log(x+1)2+log(x+2)3+log(x+3)4
and ddylogy.dydx=dydx=ddx[2log(x+1)]+ddx[3log(x+2)]+ddx[4log(logx)=1x]
1y.dydx=2(x+1).ddx(x+1)+3.1(x+2).ddx(x+2)+4.1(x+3).ddx(x+3)[∵ddx(logx)=1x]
=[2x+1+3x+2+4x+3]
∴dydx=y[2(x+1)+3(x+2)+4(x+3)]
=(x+1)2.(x+2)3.(x+3)4[2(x+1)+3(x+2)+4(x+3)]
=(x+1)2.(x+2)3.(x+3)4
[2(x+2)(x+3)+3(x+1)(x+3)+4(x+1)(x+2)(x+1)(x+2)(x+3)]
=(x+1)2(x+2)3(x+3)4(x+1)(x+2)(x+3)
[2(x2+5x+6)+3(x2+4x+3)+4(x2+3x+2)]
=(x+1)(x+2)2(x+3)3
[2x2+10x+12+13x2+12+9+4x2+12x+8]
=(x+1)(x+2)2(x+3)3[9x2+34x+29]
Similar questions
Physics,
4 months ago
Math,
4 months ago
English,
9 months ago
English,
9 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago