Math, asked by shikhermishra339, 5 hours ago

differentiate wrt x :- 2x^3e^x + sqrt.x logx​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {2x}^{3} {e}^{x} +  \sqrt{x} \: logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {2x}^{3} {e}^{x} + \dfrac{d}{dx} \sqrt{x} \: logx

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}uv = u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 2\bigg[ {x}^{3}\dfrac{d}{dx} {e}^{x} +  {e}^{x}\dfrac{d}{dx} {x}^{3}\bigg] + \bigg[ \sqrt{x}\dfrac{d}{dx}logx + logx\dfrac{d}{dx} \sqrt{x}\bigg]

\rm \:  =  \: 2\bigg[ {x}^{3} {e}^{x} +  {e}^{x}( {3x}^{2}) \bigg] + \bigg[ \sqrt{x} \times \dfrac{1}{x} + logx \times \dfrac{1}{2 \sqrt{x} } \bigg]

\rm \:  =  \: 2 {x}^{2} {e}^{x} \bigg[ x + 3 \bigg] + \bigg[\dfrac{1}{ \sqrt{x} } + \dfrac{logx}{2 \sqrt{x} } \bigg]

Hence,

\boxed{\tt{ \dfrac{dy}{dx}  =  \: 2 {x}^{2} {e}^{x} \bigg[ x + 3 \bigg] + \bigg[\dfrac{1}{ \sqrt{x} } + \dfrac{logx}{2 \sqrt{x} } \bigg]}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
133

Question:-

 \sf y = 2x {}^{3} e {}^{x}  +  \sqrt{x}  \: logx

Given:-

\sf y = 2x {}^{3} e {}^{x}  +  \sqrt{x}  \: logx

Solution:-

We know that,

 \sf \pink{ \frac{d}{dx} uv = u \frac{d}{dx} v + v \frac{d}{dx} u}

 \sf \longmapsto \frac{dy}{dx}  = 2 \bigg[x {}^{3} \frac{d}{dx} e {}^{x}  + e {}^{x}  \frac{d}{dx} x {}^{3} \bigg  ] +  \bigg[ \sqrt{x}  \frac{d}{dx} log  x + logx \frac{d}{dx} \sqrt{x}   \bigg]

 \sf = 2 \bigg[x  {}^{3}  e {}^{x}  + e {}^{x} (3x {}^{2}) \bigg ] +  \bigg[ \sqrt{x} \times \frac{1}{x}   + logx \times  \frac{1}{2 \sqrt{x} } \bigg ]

 \sf = 2x {}^{2} e {}^{x} \bigg[x + 3 \bigg] +  \bigg[ \frac{1}{ \sqrt{x} } +  \frac{logx}{2 \sqrt{x} } \bigg  ]

Answer:-

Hence, Required Answer is

 \sf  \green{ \frac{dy}{dx}  = 2x {}^{2} e {}^{x} \bigg[x + 3 \bigg]  +  \bigg[ \frac{1}{ \sqrt{x}  } +  \frac{logx}{2 \sqrt{x} }  \bigg ]}

Hope you have satisfied.

Similar questions