Math, asked by rabiabharwani82, 15 days ago

differentiate wrt x (find dy/dx).​

Attachments:

Answers

Answered by pulakmath007
11

SOLUTION

TO DETERMINE

To Differentiate with respect to x

 \displaystyle \sf{y =  { \cot}^{ - 1}  \bigg( \:   \frac{1 -  \sqrt{x} }{1 +  \sqrt{x} } \bigg)}

EVALUATION

Here the given function is

 \displaystyle \sf{y =  { \cot}^{ - 1}  \bigg( \:   \frac{1 -  \sqrt{x} }{1 +  \sqrt{x} } \bigg)}

 \displaystyle \sf{ \implies \: y =  { \tan}^{ - 1}  \bigg( \:   \frac{1  +  \sqrt{x} }{1  -   \sqrt{x} } \bigg)}

 \displaystyle \sf{ let \:  \: x =  { \tan}^{2} \theta }

Then above becomes

 \displaystyle \sf{ \implies \: y =  { \tan}^{ - 1}  \bigg( \:   \frac{1  +  \sqrt{ { \tan}^{2} \theta} }{1  -   \sqrt{  { \tan}^{2} \theta} } \bigg)}

 \displaystyle \sf{ \implies \: y =  { \tan}^{ - 1}  \bigg( \:   \frac{1  +   { \tan}^{} \theta }{1  -  { \tan}^{} \theta} \bigg)}

 \displaystyle \sf{ \implies \: y =  { \tan}^{ - 1}  \bigg( \:   \frac{ \tan  \frac{\pi}{4}   +   { \tan}^{} \theta }{1  - \tan \frac{\pi}{4}   { \tan}^{} \theta} \bigg)}

 \displaystyle \sf{ \implies \: y =  { \tan}^{ - 1}  \tan   \bigg( \frac{\pi}{4}   +  \theta \bigg) }

 \displaystyle \sf{ \implies \: y =    \bigg( \frac{\pi}{4}   +  \theta \bigg) }

 \displaystyle \sf{Now \:  \:  \: x =  { \tan}^{2}  \:  \theta \:  \: implies \: \:  \theta =  { \tan}^{ - 1}  \sqrt{x}  }

 \displaystyle \sf{  \therefore \:  \:  \: y = \bigg( \frac{\pi}{4} + { \tan}^{ - 1} \sqrt{x} \bigg) }

Differentiating both sides with respect to x we get

\displaystyle \sf{ \: \frac{dy}{dx} = \frac{d}{dx} \bigg( \frac{\pi}{4} + { \tan}^{ - 1} \sqrt{x} \bigg) }

\displaystyle \sf{ \implies \: \frac{dy}{dx} = \frac{d}{dx} \bigg( \frac{\pi}{4} \bigg) +\frac{d}{dx} \bigg( { \tan}^{ - 1} \sqrt{x} \bigg) }

\displaystyle \sf{ \implies \: \frac{dy}{dx} = 0 + \frac{1}{1 + {( \sqrt{x} )}^{2} } . \frac{d}{dx}( \sqrt{x} )}

\displaystyle \sf{ \implies \: \frac{dy}{dx} =  \frac{1}{2 \sqrt{x} (1 + x)} }

FINAL ANSWER

 \boxed{ \:  \: \displaystyle \sf{  \: \frac{dy}{dx} =  \frac{1}{2 \sqrt{x} (1 + x)} } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions