Math, asked by Neel28vyas, 7 months ago

Differentiate WRT x. log(x^3+2)

Answers

Answered by Asterinn
5

 log( {x}^{3} + 2 )

We have to differentiate the above expression with respect to x.

 \implies \dfrac{d(log( {x}^{3} + 2 ) )}{dx}

Now differentiate using Chain rule :-

[ d(logx)/dx = 1/x]

\implies  \dfrac{1}{({x}^{3} + 2 )} \times \dfrac{d({x}^{3} + 2  ) }{dx}

\implies  \dfrac{1}{({x}^{3} + 2 )} \times ( \dfrac{d({x}^{3}  ) }{dx}  +  \dfrac{d(  2 ) }{dx} )

[d(x^n)/dx = n x^(n-1) ]

differentiation of constant term is zero. Therefore d(2)/dx is zero.

\implies  \dfrac{1}{({x}^{3} + 2 )} \times (3{x}^{2}  + 0)

\implies  \dfrac{1}{({x}^{3} + 2 )} \times 3{x}^{2}

\implies  \dfrac{3{x}^{2}}{{x}^{3} + 2 }

Answer :

\dfrac{3{x}^{2}}{{x}^{3} + 2 }

____________________

\large\bf\blue{Additional-Information}

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

____________________

Answered by Anonymous
1

Given ,

The function is y = log(x³ + 2)

Differentiaing y wrt x by using chain rule , we get

\tt \implies \frac{dy}{dx}  =  \frac{d \{ log( {x}^{3} + 2) \}}{dx}

\tt \implies \frac{dy}{dx}  =   \frac{1}{ {x}^{3} + 2 }  \frac{d \{ {x}^{3} + 2  \}}{dx}

\tt \implies \frac{dy}{dx}   =  \frac{1}{ {x}^{3}  + 2}  \times 3 {x}^{2} + 0

  \tt \implies\frac{dy}{dx}   =  \frac{ 3 {x}^{2} }{ {x}^{3}  + 2}

Remmember :

  \tt \implies\frac{d \{log (x ) \}}{dx}   = \frac{1}{x}

  \tt \implies\frac{d \{  {x}^{n} \}}{dx}   =n {(x)}^{n - 1}

  \tt \implies\frac{d(constant)}{dx}   =0

________________ Keep Smiling

Similar questions