Math, asked by Bhaskar36191, 6 months ago

Differentiate X^2/a^2+y^2/b^2=100,where a and b are constants

Answers

Answered by Asterinn
7

 \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 100

We have to differentiate the above expression.

 \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  - 100 = 0

  \implies\dfrac{d( \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }   - 100)}{dx}  =  \dfrac{d(0)}{dx}

 \implies \:  \dfrac{d(\dfrac{ {x}^{2} }{ {a}^{2} })}{dx}   +  \dfrac{d(\dfrac{ {y}^{2} }{ {b}^{2} } )}{dx}   -  \dfrac{d(100)}{dx}  = 0

\implies \:  \dfrac{2x}{ {a}^{2} } +  \dfrac{2y}{ {b}^{2} }   \:  \dfrac{dy}{dx}   + 0 = 0

\implies \:  \dfrac{2x}{ {a}^{2} } +  \dfrac{2y}{ {b}^{2} }   \:  \dfrac{dy}{dx}   = 0

Taking out 2 common :-

\implies \: 2( \dfrac{x}{ {a}^{2} } +  \dfrac{y}{ {b}^{2} }   \:  \dfrac{dy}{dx}   )= 0

\implies \: ( \dfrac{x}{ {a}^{2} } +  \dfrac{y}{ {b}^{2} }   \:  \dfrac{dy}{dx}   )=  \dfrac{0}{2}

\implies \: ( \dfrac{x}{ {a}^{2} } +  \dfrac{y}{ {b}^{2} }   \:  \dfrac{dy}{dx}   )=  {0}

\implies \:   \dfrac{y}{ {b}^{2} }   \:  \dfrac{dy}{dx}   =  - \dfrac{x}{ {a}^{2} }

\implies \:     \dfrac{dy}{dx}   =  - \dfrac{x}{ {a}^{2} } \times \dfrac{{b}^{2}}{ y }

\implies \:     \dfrac{dy}{dx}   =  - \:  \dfrac{x \: {b}^{2}}{ {a}^{2} y}

Answer :

 \dfrac{dy}{dx}   =  - \:  \dfrac{x \: {b}^{2}}{ {a}^{2} y}

_____________________

\large\bf\blue{Additional-Information}

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

________________________

Similar questions