Differentiate x^2 tan x.
Answers
Answered by
9
Solution :
≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
d/dx ( x² tan x)
= { x².d/dx (tanx) + tanx.d/dx (x²) }
= ( x²sec²x + 2x tan x ).
≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
MANISHNAVIK1
≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
d/dx ( x² tan x)
= { x².d/dx (tanx) + tanx.d/dx (x²) }
= ( x²sec²x + 2x tan x ).
≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
MANISHNAVIK1
Answered by
20
y = x²tanx
we know , when a , function is product of two functions f(x) and g(x)
y = f(x).g(x)
then, dy/dx = g(x).df(x)/dx + f(x).dg(x)/dx
use this concept here,
y = x²tanx
dy/dx = x².d(tanx)/dx + tanx.d(x²)/dx
= x²sec²x + 2x .tanx
we know , when a , function is product of two functions f(x) and g(x)
y = f(x).g(x)
then, dy/dx = g(x).df(x)/dx + f(x).dg(x)/dx
use this concept here,
y = x²tanx
dy/dx = x².d(tanx)/dx + tanx.d(x²)/dx
= x²sec²x + 2x .tanx
Similar questions