Math, asked by nandinisbp2b124, 4 months ago

differentiate ( x+2) /(x+5) wrt x​

Answers

Answered by Atαrαh
10

Solution:

\implies \:\sf{y = \dfrac{x+2}{x+5}}\\ \\

______________

Remember:

Quotient rule of differentiation,

\blacksquare \:\sf{\dfrac{dy}{dx}= \dfrac{v.\dfrac{du}{dx}- u.\dfrac{dv}{dx}}{v^2}}\\ \\

\blacksquare Differentiation of x wrt x is 1.

\blacksquareDifferntiation of constant wrt x is 0

_____________________

Differentiating wrt x,

\implies\sf{\dfrac{dy}{dx} =\dfrac{(x+5). \dfrac{d(x+2)}{dx}  - (x +2 )\dfrac{d(x+5)}{dx}}{{(x+5)}^2}}\\ \\

Differentiating (x+2) :

\implies\sf{\dfrac{d(x+2)}{dx}= \dfrac{dx}{dx}+\dfrac{d2}{dx}}\\ \\

\implies\sf{\dfrac{d(x+2)}{dx}= 1+0}\\ \\

\implies\sf{\dfrac{d(x+2)}{dx}= 1}\\ \\

Differentiating (x+5):

\implies\sf{\dfrac{d(x+5)}{dx}= \dfrac{dx}{dx}+\dfrac{d5}{dx}}

\implies\sf{\dfrac{d(x+5)}{dx}= 1+0}\\ \\

\implies\sf{\dfrac{d(x+5)}{dx}= 1}\\ \\

Now,

\implies\sf{\dfrac{dy}{dx} =\dfrac{(x+5)  - (x +2 )}{{(x+5)}^2}}\\ \\

\implies\sf{\dfrac{dy}{dx} =\dfrac{x+5 - x - 2 }{{(x+5)}^2}}\\ \\

\implies\boxed{\sf{\dfrac{dy}{dx} =\dfrac{3 }{{(x+5)}^2}}}\\ \\

Answered by mathdude500
3

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\longrightarrow \:(1). \:  \boxed{ \red{\tt \: \dfrac{d}{dx}x = 1  }}

\longrightarrow \:(2). \:  \boxed{ \red{\tt \: \dfrac{d}{dx}k \: = 0  }}

\longrightarrow \:(3). \:  \boxed{ \red{\tt \: \dfrac{d}{dx}\dfrac{u}{v}  = \dfrac{v\dfrac{du}{dx}  - u\dfrac{dv}{dx} }{ {v}^{2} }   }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:   \longrightarrow \:Let \: y \:  = \dfrac{x + 2}{x + 5}

☆ Differentiate w. r. t. x both sides, we get

\tt \:   \longrightarrow \:\dfrac{d}{dx}y = \dfrac{d}{dx} \bigg( \dfrac{x + 2}{x + 5} \bigg)

\tt \:   \longrightarrow \:\dfrac{dy}{dx} = \dfrac{(x + 5)\dfrac{d}{dx}(x + 2) - (x + 2)\dfrac{d}{dx}(x + 5)}{ {(x + 5)}^{2} }

\tt \:   \longrightarrow \:\dfrac{dy}{dx} = \dfrac{(x + 5)(1 + 0) - (x + 2)(1  + 0)}{ {(x + 5)}^{2} }

\tt \:   \longrightarrow \:\dfrac{dy}{dx} = \dfrac{ \cancel{x} + 5 -  \cancel{x} - 2}{ {(x + 5)}^{2} }

\tt \:   \longrightarrow \:\dfrac{dy}{dx} = \dfrac{3}{ {(x + 5)}^{2} }

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions