Physics, asked by Anonymous, 1 month ago

Differentiate ( πx⅐ + 2x + 3 ) with respect to x.

Don't Spam ❌

Answers

Answered by TrustedAnswerer19
5

 \orange{ \boxed{\boxed{\begin{array}{cc}\rm \to \:let\\  \\  \rm \:y = \pi {x}^{ \frac{1}{7} }  + 2x + 3 \\  \\  \\  \blue{ \underline{ \pink{ \sf \:   \: we \: have \: to \: find : }}} \\  \\  \small{\sf \hookrightarrow \:  differentiate \: the \: function \: w.r.t \:  \: x =  \frac{dy}{dx} }  \\  \\  \\  \red{ \underline{ \sf \: solution}} \\  \\  \\ \rm \:   \frac{dy}{dx}  =  \frac{d}{dx}(\pi {x}^{ \frac{1}{7} } + 2x + 3) \\  \\    \pink{ {\boxed{\begin{array}{cc}\rm \to \:we \: know \: that \\  \\ \sf \hookrightarrow \:   \frac{d}{dx} (u \pm \: v) =  \frac{d \: u}{dx}  \pm \:  \frac{d \: v}{dx} \\  \\ \sf \hookrightarrow \:   \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1}  \\  \\ \sf \hookrightarrow \: \frac{d}{dx}(constant) = 0  \end{array}}}}</p><p>\\ \\  \red{ \sf \: apply \: these \: rules}  \\   \\ \rm \:  \frac{dy}{dx} =   \frac{d}{dx} \pi {x}^{ \frac{1}{7} }   +  \frac{d}{dx}2x +  \frac{d}{dx}  3 \\  \\   \rm  = \pi \times  \frac{1}{7}    \times   {x}^{ \frac{1}{7}  - 1} + 2 \times 1 + 0 \\  \\   \rm  =  \frac{\pi}{7} \times  {x}^{ -  \frac{6}{7} }  + 2 \\  \\   \rm  =  \frac{\pi}{7 {x}^{ \frac{6}{7} } } + 2 \\  \\  \\  \blue{ \boxed{ \therefore \rm \frac{dy}{dx} =  \frac{\pi}{7 {x}^{ \frac{6}{7} } }  + 2}}  \end{array}}}}</p><p>

Answered by llxMrsINVALIDxll
0

Explanation:

Kitna dheere send krti hai ಥ‿ಥ

Similar questions