Math, asked by rebkmacbecky11, 1 year ago

differentiate (x^3cosx-2^xtanx)​

Answers

Answered by Anonymous
0

Answer:

\bold\red{ \frac{dy}{dx}   =  -  {x}^{3}  \sin(x)  + 3 {x}^{2}  \cos(x)  -  {2}^{x} { \sec }^{2}  x -  {2}^{x}  ln(x)  \tan(x) }

Step-by-step explanation:

 y =  {x}^{3}  \cos(x)  -  {2}^{x}  \tan(x)  \\  =  >  \frac{dy}{dx}  =  {x}^{3}  \frac{d}{dx} ( \cos \: x)  +  \cos(x)  \frac{d}{dx} ( {x}^{3} ) -  {2}^{x}  \frac{d}{dx}( \tan \: x)   -  \tan(x  )  \frac{d}{dx} ( {2}^{x}) \\  \\  =  > \frac{dy}{dx}   =  -  {x}^{3}  \sin(x)  + 3 {x}^{2}  \cos(x)  -  {2}^{x} { \sec }^{2}  x -  {2}^{x}  ln(2)  \tan(x)

Here,

concepts used are :-

1. \:  \:  \frac{d}{dx} ( {x}^{n} ) = n {x}^{n - 1} \:  \\  \\ 2. \:  \:  \frac{d}{dx} ( \cos \: x) =  -  \sin \: x  \\  \\ 3. \:  \:  \frac{d}{dx} ( \tan \: x) =  { \sec }^{2}  x \\  \\ 4. \frac{d}{dx} ( {a}^{x} ) =  {a}^{x}  ln(a )

Similar questions