Math, asked by hiteshmonu2003, 10 months ago

differentiate x^8/8^x with respect to X​

Answers

Answered by suryanshipathak
0

Answer:

8^x8x^7-x^8 8log8^x/8^x2

Step-by-step explanation:

use quotient rule to solve this

Answered by Anonymous
1

Answer:

\large \boxed{\sf{  \dfrac{8 {x}^{7}  -  {x}^{8} ln(8)  }{ {8}^{x} } }}

Step-by-step explanation:

y =  \dfrac{ {x}^{8} }{ {8}^{x} }

We know that,

 \dfrac{d}{dx}  \dfrac{f(x)}{g(x)}  =  \dfrac{ g(x) \dfrac{d}{dx} f(x) - f(x) \dfrac{d}{dx} g(x)}{ {(g(x))}^{2} }

Therefore, differentiate wrt x , we get

 =  >  \dfrac{dy}{dx}  =  \dfrac{ {8}^{x}  \dfrac{d}{dx}  {x}^{8} -  {x}^{8}   \dfrac{d}{dx} {8}^{x}  }{ {( {8}^{x} )}^{2} }

But, we know that,

  •  \dfrac{d}{dx}  {a}^{x}  =  {a}^{x}  ln(a)

  •  \dfrac{d}{dx}  {x}^{n}  = n {x}^{n - 1}

Therefore, we will get,

 =  >  \dfrac{dy}{dx}  =  \dfrac{ {8}^{x}  \times 8 {x}^{7} -  {x}^{8}   \times  {8}^{x} ln(8)  }{ {8}^{2x} }  \\  \\  =  >  \dfrac{dy}{dx}  =  \dfrac{  \cancel{{8}^{x}}(8 {x}^{7}   -  {x}^{8}  ln8)   }{ \cancel{ {8}^{x} } \times  {8}^{x} }  \\  \\   =  > \large \bold{ \dfrac{dy}{dx}  =   \dfrac{8 {x}^{7}  -  {x}^{8} ln(8)  }{ {8}^{x} } }

Similar questions