Math, asked by mad777768, 3 months ago

differentiate x+cosx/tanx w.r.t.x​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

 \sf \:  \:  \:  \: Let \: y = \dfrac{x + cosx}{tanx}

On differentiating both sides w. r. t. x, we get

 \sf \: \dfrac{d}{dx}y  =  \:  \:  \: \dfrac{d}{dx} \bigg(\dfrac{x + cosx}{tanx}  \bigg)

We know that

  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{ \: \dfrac{d}{dx} \dfrac{u}{v}  = \dfrac{v\dfrac{d}{dx} u - u\dfrac{d}{dx} v}{ {v}^{2} } }}

Here,

  • u = x + cosx

and

  • v = tanx

On substituting all these values, we get

 \sf \: \dfrac{dy}{dx}  =  \:  \:  \: \dfrac{tanx \: \dfrac{d}{dx} (x + cosx) - (x + cosx)\dfrac{d}{dx} tanx}{ {tan}^{2}x }

Now,

we know that

 \boxed{ \sf\dfrac{d}{dx} x = 1} \: and \:  \boxed{ \sf\dfrac{d}{dx} cosx =  - sinx} \: and \:  \boxed{ \sf\dfrac{d}{dx} tanx =  {sec}^{2}x }

So,

 \sf \: \dfrac{dy}{dx}  =  \:  \:  \: \dfrac{tanx(1 - sinx) - (x + cosx) {sec}^{2} x}{ {tan}^{2} x}

 \sf \: \dfrac{dy}{dx}  =  \:  \:  \: \dfrac{tanx(1 - sinx)}{ {tan}^{2}x }  - \dfrac{(x + cosx) {sec}^{2}x }{ {tan}^{2} x}

 \sf \: \dfrac{dy}{dx}  =  \:  \:  \: \dfrac{1 - sinx}{tanx}  - \dfrac{x + cosx}{ {sin}^{2} x}

 \sf \: \dfrac{dy}{dx}  =  \:  \:  \: \dfrac{1}{ {tan}x }  - \dfrac{sinx}{tanx} -  \dfrac{x}{ {sin}^{2}x } -  \dfrac{cosx}{ {sin}^{2}x }

 \sf \: \dfrac{dy}{dx}  =  \:  \:  \: cotx - cosx - x {cosec}^{2}x  -  cotx \: cosecx

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

 \boxed{ \sf\dfrac{d}{dx}  {x}^{n}  =  {nx}^{n - 1} }

 \boxed{ \sf\dfrac{d}{dx} logx = \dfrac{1}{x} }

 \boxed{ \sf\dfrac{d}{dx}  {e}^{x} =  {e}^{x} }

 \boxed{ \sf\dfrac{d}{dx} sinx = cosx}

 \boxed{ \sf\dfrac{d}{dx} cotx =  -  {cosec}^{2}x }

 \boxed{ \sf\dfrac{d}{dx} secx  = secx \: tanx}

 \boxed{ \sf\dfrac{d}{dx} k = 0}

 \boxed{ \sf\dfrac{d}{dx} kf(x) = k\dfrac{d}{dx} f(x)}

 \boxed{ \sf\dfrac{d}{dx} u.v = v\dfrac{d}{dx} u \:  +  \: u\dfrac{d}{dx} v}

Similar questions