Math, asked by aahanamalakar04, 6 months ago

differentiate x^nlogax​

Answers

Answered by AdorableMe
9

Answer:

\sf{x^{n-1}[n.ln(ax)+1]}

Step-by-step explanation:

To differentiate \sf{x^nln(ax)}.

Let y = \sf{x^nln(ax)}.

\sf{\dfrac{dy}{dx}=\dfrac{d}{dx}[x^nln(ax)]  }

Applying product rule :-

\displaystyle \sf{ =\frac{d}{dx} (x^n).ln(ax)+x^n.\frac{d}{dx}[ln(x)]  }

\displaystyle \sf{=nx^{n-1}ln(ax)+x^n.\frac{1}{ax}.\frac{d}{dx}(ax)   }

\displaystyle \sf{ =nx^{n-2}ln(ax)+\frac{a.\frac{d}{dx}(x).x^{n-1} }{a} }

\displaystyle \sf{ =nx^{n-1}ln(ax)+1x^{n-1}}

\sf{=nx^{n-1}ln(ax)+x^{n-1}}

Simplifying :-

\sf{x^{n-1}[n.ln(ax)+1]}

Therefore, the answer.

Answered by EnchantedGirl
35

REFER TO THE ATTACHMENT

HOPE IT HELPS :)

Attachments:
Similar questions