Differentiate (x+secx)(x-tanx)wrt x
Answers
Answered by
1
Answer:
f'(x) = x(2 - sec²x + secx tanx) - tanx + secx - sec³x + secx tan²x
Step-by-step explanation:
Let f(x) = (x+secx)(x-tanx)
⇒ f(x) = x² - x tanx + x secx - secx tanx
On differentiating both sides w.r.t. x, we get
⇒ f'(x) = 2x - (x.sec²x + tanx) + (x.secx.tanx + secx) - (secx.sec²x - secx.tanx.tanx)
⇒ f'(x) = 2x - x sec²x - tanx + x secx tanx + secx - sec³x + secx tan²x
⇒ f'(x) = x(2 - sec²x + secx tanx) - tanx + secx - sec³x + secx tan²x
Formula used :-
1)
Similar questions
Math,
1 month ago
Science,
1 month ago
World Languages,
1 month ago
History,
2 months ago
Math,
8 months ago