Math, asked by raghava1234, 5 months ago

differentiate x/sinx using first principle ​

Answers

Answered by senboni123456
1

Step-by-step explanation:

y = f(x) =  \frac{x}{ \sin(x) }  \\

 \frac{dy}{dx}  =  \lim_{h \rarr0} \frac{f(x + h) - f(x)}{h}  \\

 \frac{dy}{dx}  =  \lim_{h \rarr0} \frac{ \frac{x + h}{ \sin(x + h) } -  \frac{x}{ \sin(x) }  }{h}  \\

 \frac{dy}{dx}  =  \lim_{h \rarr0} \frac{x( \sin(x)  -  \sin(x + h)) - h \sin(x)  }{h \sin(x + h)  \sin(x) }   \\

\frac{dy}{dx}  =  \lim_{h \rarr0} \frac{x( \sin(x)   -  \sin(x)  \cos(h)  -  \cos(x)  -  \sin(h)) }{h \sin(x + h)  \sin(x) }  -  \lim_{h \rarr0} \frac{1}{ \sin(x + h) }  \\

  = \lim_{h \rarr0} \frac{x \sin(x)(1 -  \cos(h)  ) - x \cos(x) \sin(h)  }{h \sin(x + h) \sin(x)  }  -  \frac{1}{ \sin(x) }  \\

 =   \lim_{h \rarr0} \frac{x(1 -  \cos(h) )}{h \sin(x + h) }  -  \lim_{h \rarr0} \frac{ \cos(x) \sin(h)  }{h \sin(x + h) }  -  \cosec(x)  \\

 =  \lim_{h \rarr0} \frac{1 -  \cos(h) }{h}  .\lim_{h \rarr0} \frac{x}{ \sin(x + h) }  -  \lim_{h \rarr0} \frac{ \sin(h) }{h}  .\lim_{h \rarr0} \frac{ \cot(x) }{ \sin(x + h) }  -  \cosec(x)  \\

 = 0 \times  \frac{x}{ \sin(x) }  - 1 \times  \frac{ \cos(x) }{ \sin ^{2} (x) }  -  \frac{1}{ \sin(x) }

 =  -  \frac{( \cos(x)  +  \sin(x)) }{ \sin^{2} (x) }  \\

Similar questions