Physics, asked by vllblavanyasaini0409, 5 months ago

differentiate x under root 1+x³ at x=2​

Answers

Answered by Anonymous
2

Hey There

Here's The Answer

______________________________

Kindly refer to the Attachment

Hope It Helps.

Attachments:
Answered by Asterinn
5

 \implies\dfrac{d(x \sqrt{1 +  {x}^{3} } )}{dx}

\implies\dfrac{d(x  {(1 +  {x}^{3})}^{ \frac{1}{2} }  )}{dx}

Now using product rule :-

 \dfrac{d(uv)}{d}  = u \dfrac{dv}{dx}  + v u \dfrac{du}{dx}

\implies \:  {(1 +  {x}^{3} )}^{ \frac{1}{2} } \dfrac{dx}{dx} + x\dfrac{d {((1 +  {x}^{3} )}^{ \frac{1}{2} })}{dx}

\implies \:  {(1 +  {x}^{3} )}^{ \frac{1}{2} }  +  \dfrac{1}{2} x {(1 +  {x}^{3} )}^{ \frac{ - 1}{2} } \:  \: \dfrac{d(1 +  {x}^{3})}{dx}

\implies \:  {(1 +  {x}^{3} )}^{ \frac{1}{2} }  +  \dfrac{1}{2} x {(1 +  {x}^{3} )}^{ \frac{ - 1}{2} }   3{x}^{2}

\implies \:  {(1 +  {x}^{3} )}^{ \frac{1}{2} }  +  \dfrac{3}{2}  {(1 +  {x}^{3} )}^{ \frac{ - 1}{2} }   {x}^{3}

Now to get final answer put x = 2

\implies \:  {(1 +  {2}^{3} )}^{ \frac{1}{2} }  +  \dfrac{3}{2}  {(1 +  {2}^{3} )}^{ \frac{ - 1}{2} }   {2}^{3}

We know that :- 2³=8

\implies \:  {(1 +  8)}^{ \frac{1}{2} }  +  {3}  {(1 +  8 )}^{ \frac{ - 1}{2} }   {2}^{2}

\implies \:  {(9)}^{ \frac{1}{2} }  +  {3}  {(9 )}^{ \frac{ - 1}{2} }   {2}^{2}

\implies \:  {(3)}^{ \frac{1}{2} \times 2 }  +  {3}  {(3 )}^{ \frac{ - 1}{2}  \times 2}    \: {2}^{2}

\implies \:  {(3)} +  {3}  {(3 )}^{ { - 1}}    \: {2}^{2}

\implies \:  {(3)} +  {(3 )}^{ { - 1 + 1}}    \: {2}^{2}

\implies \:  {(3)} +  {(3 )}^{ {0}}    \: {2}^{2}

\implies \:  {3} +   \: {2}^{2}

we know that :- 2²= 4

\implies \:  {3} +   4

\implies \:  7

Answer : 7

Similar questions