Math, asked by sandy1489, 1 year ago

differentiate x^x by first principle

Answers

Answered by abhi178
1
y = x^x
= e^xlogx

now differentiate with respect to x
we Know ,
deferentiation of e^ax
e.g e^ax .a , use this concept here,

dy/dx = e^xlogx. d(xlogx )/dx
= x^x {x.d(logx)/dx + logx.dx/dx }
[ x^x = e^xlogx used above ]
= x^x{1 + logx }

hence, deffentiation of x^x =x^x (1 + logx)


sandy1489: thanks....but i want the solution by using first principle method
Answered by pulakmath007
3

SOLUTION

TO DETERMINE

To differentiate by first principle

 \sf  {x}^{x}

FORMULA TO BE IMPLEMENTED

\displaystyle \sf  1. \:  \: \: f'(x) = \lim_{h \to 0}  \:  \frac{f(x + h) - f(x)}{h}

\displaystyle \sf  2. \:  \: \:  \lim_{x \to 0}  \:  \frac{ {a}^{x}  - 1}{x}  =  \ln a

EVALUATION

Let f(x) be the given function

Then we have

 \sf f(x) =  {x}^{x}

Now using first principle on derivatives we get

\displaystyle \sf  f'(x)

\displaystyle \sf   = \lim_{h \to 0}  \:  \frac{f(x + h) - f(x)}{h}

\displaystyle \sf   = \lim_{h \to 0}  \:  \frac{ {(x + h)}^{x + h}  -  {x}^{x} }{h}

\displaystyle \sf   = \lim_{h \to 0}  \:  \frac{ {(x + h)}^{x + h} -  {x }^{x + h} +   {x }^{x + h}-  {x}^{x} }{h}

\displaystyle \sf   = \lim_{h \to 0}  \:  \frac{ {(x + h)}^{x + h} -  {x }^{x + h} +   {x }^{x + h}-  {x}^{x} }{h}

\displaystyle \sf   = \lim_{h \to 0}  \:  \frac{ {(x + h)}^{x + h} -  {x }^{x + h}}{h}  + \lim_{h \to 0}  \:  \frac{   {x }^{x + h}-  {x}^{x} }{h}

\displaystyle \sf   = \lim_{h \to 0}  \:  {x}^{x + h}.  \frac{ { \bigg( \dfrac{x + h}{x}  \bigg)}^{x + h} -  1}{h}  + \lim_{h \to 0}  \: {x}^{x} . \frac{   {x }^{x + h}-  1}{h}

\displaystyle \sf   = \lim_{h \to 0}  \:  {x}^{x + h}.  \lim_{h \to 0}  \frac{ { \bigg( \dfrac{x + h}{x}  \bigg)}^{x + h} -  1}{h}  +  \: {x}^{x} . \lim_{h \to 0}  \frac{   {x }^{h}-  1}{h}

\displaystyle \sf   =  {x}^{x }.  \lim_{h \to 0}  \frac{{ \bigg( 1 + \dfrac{ h}{x}  \bigg)}^{x} { \bigg( 1 + \dfrac{ h}{x}  \bigg)}^{ h} -  1}{h}  +  \: {x}^{x} . \lim_{h \to 0}  \frac{   {x }^{ h}-  1}{h}

\displaystyle \sf   =  {x}^{x }.  \lim_{h \to 0}  \frac{ { \bigg( 1 + \dfrac{ h}{x}  \bigg)}^{ x} .1-  1}{h}  +  \: {x}^{x} . \lim_{h \to 0}  \frac{   {x }^{ h}-  1}{h}

\displaystyle \sf   =  {x}^{x }.  \lim_{h \to 0}  \frac{ \bigg[{{ \bigg( 1 + \dfrac{ h}{x}  \bigg)}^{ \frac{x}{h} } \bigg] }^{h} -  1}{h}  +  \: {x}^{x} . \lim_{h \to 0}  \frac{   {x }^{ h}-  1}{h}

\displaystyle \sf   =  {x}^{x }.  \lim_{h \to 0}   \frac{ {e}^{h} - 1 }{h}   +  \: {x}^{x} . \lim_{h \to 0}  \frac{   {x }^{ h}-  1}{h}

\displaystyle \sf   =  {x}^{x }. \ln e  +  \: {x}^{x} .  \ln x

\displaystyle \sf   =  {x}^{x }  +  \: {x}^{x} .  \ln x

\displaystyle \sf   =  {x}^{x }(1  +    \ln x)

FINAL ANSWER

Using first principle on derivatives

\displaystyle \sf   \frac{d}{dx}  \bigg(  {x}^{x} \bigg) =   {x}^{x }(1  +    \ln x)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

2. let 5f(x)+ 3f(1/x)=x+2 and y= xf(x) . then x=1 point dy/dx=?

https://brainly.in/question/19870192

3. Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2] W. r. to. x. is

https://brainly.in/question/18312318

Similar questions