Math, asked by bina8321, 8 months ago

Differentiate x^x + (sinx)^x w.r.t x.

Answers

Answered by sandy1816
2

let \:  \:  \:  \:  \: y =  {x}^{x} + ( {sinx})^{x}   \\ let \:  \:  \: u =  {x}^{x}  \:  \:  \:  \: v = ( {sinx})^{x}  \\  \\ now \:  \: u =  {x}^{x}  \\ logu = xlogx \\  \frac{1}{u}  \frac{du}{dx}  = x \frac{1}{x}  + logx \\  \frac{du}{dx}  = u(1 + logx) \\  \frac{du}{dx}  =  {x}^{x} (1 + logx) \\  \\ v =  ({sinx})^{x}  \\ logv = xlogsinx \\   \frac{1}{v} \frac{dv}{dx}  = x \frac{1}{sinx} cosx + logsinx \\  \frac{dv}{dx}  = v(xcotx + logsinx) \\  \frac{dv}{dx}  = ( {sinx})^{x} (xcotx + logsinx) \\  \\  \therefore \:  \:  \:  \:  \frac{dy}{dx}  =  {x}^{x} (1 + logx) + ( {sinx})^{x} (xcotx + logsinx)

Similar questions