Math, asked by redent2466, 8 hours ago

Differentiate (x²+1) (x²+3).

Answers

Answered by karnamh
0

Answer:

4. If y = (sin-¹ x)², prove that (1-x²)y² - xy₁ - 2 = 0 and deduce that (1-x²) Yn+2 - (2n + 1)xYn+1 -n₂yn = 0.

Step-by-step explanation:

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
6

Required Solution :-

Firstly we'll multiply them.

  • x² (x² + 3) + 1 (x² + 3)
  • x⁴ + 3x² + x² + 3

Now, we'll differentiate them w.r.t. x.

We would be using the given theorum :

  • d / dx (x^n) = nx^n-1

   \\ \implies \: \sf{ \dfrac{d}{dx}(x {}^{4}) \:  +  \: \dfrac{d}{dx}(3x {}^{2}) \:  +  \:  \dfrac{d}{dx}(x {}^{2}) \: +  \dfrac{d}{dx}(3)} \\  \\   \implies \: \sf{ \dfrac{d}{dx}(4x {}^{4 - 1}) \:  +  \: 3\dfrac{d}{dx}(x {}^{2}) \:  +  \:  \dfrac{d}{dx}(x {}^{2}) \: +  \dfrac{d}{dx}(3)} \\  \\ \implies \: \sf{ \dfrac{d}{dx}(4x {}^{4 - 1}) \:  +  \: 3\dfrac{d}{dx}(2x {}^{2 - 1}) \:  +  \:  \dfrac{d}{dx}(2x {}^{2 - 1}) \: +  \dfrac{d}{dx}(3)} \\  \\ \implies \: \sf{ \dfrac{d}{dx}(4x {}^{3}) \:  +  \: 3\dfrac{d}{dx}(2x {}^{2 - 1}) \:  +  \:  \dfrac{d}{dx}(2x {}^{2 - 1}) \: +  \dfrac{d}{dx}(3)} \\  \\ \implies \: \sf{ \dfrac{d}{dx}(4x {}^{3}) \:  +  \: 3\dfrac{d}{dx}(2x {}^{2 - 1}) \:  +  \:  \dfrac{d}{dx}(2x {}^{}) \: +  \dfrac{d}{dx}(3)} \\  \\ \implies \: \sf{ \dfrac{d}{dx}(4x {}^{3}) \:  +  \: 3\dfrac{d}{dx}(2x {}^{}) \:  +  \:  \dfrac{d}{dx}(2x {}^{}) \: +  \dfrac{d}{dx}(3)} \\  \\ \implies \: \sf{ \dfrac{d}{dx}(4x {}^{3}) \:  +  \: 3\dfrac{d}{dx}(2x {}^{}) \:  +  \:  \dfrac{d}{dx}(2x {}^{}) \: +  \dfrac{d}{dx}(0)} \\  \\  \implies \:   \bf{ \red{4x {}^{3}  \:  +  \: 6x \:  +  \: 2x}}

Similar questions