differentiate x2 cosx from first principle..
Answers
Solution:
Differentiate x2 cosx from first principle:
➜ f(x) = cos (x² + 1) f(x + h) = cos (x + h) + 1)
➜ f'(x) = lim f(x + h) - f(x)
ₕ→₀ -----------------
h
➜ lim cos((x + h)² + 1) - cos(x² - 1)
ₕ→₀ ------------------------------------
h
Limit extending to 0:
➜ cos((x + 0)² + 1) - cos (x² + 1)
---------------------------------------
0
➜ cos(x² + 1) - cos (x² + 1) 0
------------------------------------ = ---- form.
0 0
L - hospital rule:
➜ – cos((x + 0)² + 1) [ 2 (n + 0) (1) + 0 ]
➜ – sin (x² + 1) [ 2x + 0 ]
➜ – sin (x² + 1) - 2x • sin [ x² + 1 ]
#AnswerWithQuality
#BAL
differentiation of x2 cosx from first principle.. is 2x cosx - x^2 sinx
- Given,
- f(x) = x^2 cosx
- First principle,
- Using L-Hospital's rule, we have,
- ∴