Math, asked by akshatjain2426, 9 months ago


Differentiate
X2/e1+x2

Answers

Answered by Anonymous
0

Answer:

f

f'

f'(

f'(x

f'(x)

f'(x)=

f'(x)=−

f'(x)=−1

f'(x)=−1x

f'(x)=−1x2

f'(x)=−1x2e

f'(x)=−1x2e1

f'(x)=−1x2e1x

f'(x)=−1x2e1x⋅

f'(x)=−1x2e1x⋅x

f'(x)=−1x2e1x⋅x2

f'(x)=−1x2e1x⋅x2−

f'(x)=−1x2e1x⋅x2−e

f'(x)=−1x2e1x⋅x2−e1

f'(x)=−1x2e1x⋅x2−e1x

f'(x)=−1x2e1x⋅x2−e1x⋅

f'(x)=−1x2e1x⋅x2−e1x⋅2

f'(x)=−1x2e1x⋅x2−e1x⋅2x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−2

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−2x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−2x)

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−2x)e

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−2x)e1

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−2x)e1x

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−2x)e1xx

f'(x)=−1x2e1x⋅x2−e1x⋅2x(x2)2by cancelling out x2 in the numerator,=−e1x−2xe1xx4by factoring out −e1x from the numerator,=−(1−2x)e1xx4

Similar questions