Math, asked by fathimaibtisam14, 2 months ago

Differentiate ∛ x³ + 3x² -7x +1 using the chain rule.

Answers

Answered by mathdude500
3

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{\bf\:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}

\boxed{\bf\:\dfrac{d}{dx}k = 0}

\boxed{\bf\:\dfrac{d}{dx}x= 1}

\boxed{\bf\:\dfrac{d}{dx}k \: f(x)= k \: \dfrac{d}{dx}f(x)}

Solution :-

\rm :\longmapsto\:Let  \: y =  \sqrt[3]{ {x}^{3} +  {3x}^{2}  - 7x + 1 }

can be rewritten as

\rm :\longmapsto\:y =  {\bigg( {x}^{3} +  {3x}^{2} - 7x + 1\bigg) }^{\dfrac{1}{3} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}{\bigg( {x}^{3} +  {3x}^{2} - 7x + 1\bigg) }^{\dfrac{1}{3}}

\rm =\dfrac{1}{3}{\bigg( {x}^{3}+{3x}^{2}-7x+1\bigg) }^{\dfrac{1}{3} - 1}\dfrac{d}{dx}( {x}^{3} +{3x}^{2}-7x + 1)

\rm =\dfrac{1}{3}{\bigg( {x}^{3}+{3x}^{2}-7x+1\bigg) }^{\dfrac{1-3}{3}}\bigg(\dfrac{d}{dx}{x}^{3}+3\dfrac{d}{dx}{x}^{2} -7\dfrac{d}{dx}x+\dfrac{d}{dx}1\bigg)

\rm =\dfrac{1}{3}{\bigg( {x}^{3}+{3x}^{2}-7x+1\bigg) }^{ - \dfrac{2}{3}}(3 {x}^{2}+3\times 2x-7+0)

\rm =\dfrac{1}{3}{\bigg( {x}^{3}+{3x}^{2}-7x+1\bigg) }^{ - \dfrac{2}{3}}(3 {x}^{2}+6x-7)

Additional Information :-

\boxed{\bf\:\dfrac{d}{dx}sinx = cosx}

\boxed{\bf\:\dfrac{d}{dx}cosx =  - sinx}

\boxed{\bf\:\dfrac{d}{dx}cosecx =  - cosecx \: cotx}

\boxed{\bf\:\dfrac{d}{dx}secx =   secx \: tanx}

\boxed{\bf\:\dfrac{d}{dx}tanx =  {sec}^{2}x}

\boxed{\bf\:\dfrac{d}{dx}cotx =  { - \:  cosec}^{2}x}

\boxed{\bf\:\dfrac{d}{dx} {e}^{x}  =  {e}^{x}}

\boxed{\bf\:\dfrac{d}{dx} {a}^{x}  =  {a}^{x}loga}

\boxed{\bf\:\dfrac{d}{dx}logx = \dfrac{1}{x}}

Similar questions