Physics, asked by vllblavanyasaini0409, 5 months ago

differentiate y = 1/✓2x​

Answers

Answered by Itsnav
1

Answer:

dude ur question is not clear whether the x will be in root or not, but I did both refer to the attachment

Explanation:

pls mark as brainliest and follow me

Attachments:
Answered by Asterinn
1

Given :

 \sf y =  \dfrac{1}{ \sqrt{2x} }

To find :

 \sf \:  \dfrac{dy}{dx}

Solution :

\sf \implies y =  \dfrac{1}{ \sqrt{2x} }

or

\sf \implies y =   \bf\dfrac{ {x}^{ \frac{ - 1}{2} } }{ \sqrt{2} }

Now differentiating both sides :-

\sf \implies \dfrac{dy}{dx} =  \dfrac{d(\dfrac{ {x}^{ \frac{ - 1}{2} } }{ \sqrt{2} } )}{dx}

\sf \implies \dfrac{dy}{dx} =  \dfrac{1}{\sqrt{2}}   \times \dfrac{d({ {x}^{ \frac{ - 1}{2} } })}{dx}

We know that :-

 \underline{ \boxed{  \bf \dfrac{d({ {x}^{ n} })}{dx}  = n {x}^{n - 1}   }  }

Therefore :-

\sf \implies \dfrac{dy}{dx} =  \dfrac{1}{\sqrt{2}}   \times \dfrac{ - 1}{2}   \times ({ {x}^{ \frac{ - 1}{2} - 1 } })

\sf \implies \dfrac{dy}{dx} =  \dfrac{ - 1}{2\sqrt{2}}  \times ({ {x}^{ \frac{ - 3}{2}  } })

\sf \implies \dfrac{dy}{dx} =  \dfrac{ - { {x}^{ \frac{ - 3}{2}  } } }{2\sqrt{2}}

\sf \implies \dfrac{dy}{dx} =  \dfrac{ - 1 }{2\sqrt{2}{  \:  \: {x}^{ \frac{ 3}{2}  } }}

Answer :

 \sf \dfrac{ - 1 }{2\sqrt{2}{  \:  \: {x}^{ \frac{ 3}{2}  } }}

Similar questions