Physics, asked by bidyarani9374, 3 months ago

Differentiate y=Asin (wt-kx)

Answers

Answered by Asterinn
28

It is given that :- y = Asin (wt-kx)

We have to differentiate the given function with respect to x.

 \rm \longrightarrow  \dfrac{dy}{dx} =  \dfrac{d \bigg(A \: sin (wt-kx) \bigg)}{dx}

\rm \longrightarrow  \dfrac{dy}{dx} = A \times  \dfrac{d \bigg( \: sin (wt-kx) \bigg)}{dx}

\rm \longrightarrow  \dfrac{dy}{dx} = A \times \: cos(wt-kx)  \times  \dfrac{d \bigg(wt-kx \bigg)}{dx}

\rm \longrightarrow  \dfrac{dy}{dx} = A \times \: cos(wt-kx)  \times (0-k)

\rm \longrightarrow  \dfrac{dy}{dx} =  - kA \: cos(wt-kx)

Answer :- -kA cos(wt-kx)

Additional Information :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x


MagicalBeast: Awesome :)
Asterinn: Thank you! :D
Answered by TrustedAnswerer19
21

Answer:

 \green{ \sf \:  \frac{dy}{dx}  = - Ak \: cos(wt - kx)}

Explanation:

Given,

 \sf \: y = Asin(wt - kx)

we have to differenciate it.

But, at first we have to know some formula.

 \pink{ \odot \: \sf  \frac{d \: sin \: x}{dx} = cos \: x }  \\ \\  \purple{ \odot \: \sf \:  \frac{d \: (constant)}{dx}   = 0} \\  \\ \red{ \odot \:  \sf \:  \frac{d \:  {x}^{n} }{dx}  = n {x}^{n - 1} }

Solution :

 \sf \: y = Asin(wt - kx) \\ \therefore  \sf \:   \frac{dy}{dx}  =  \frac{d \:  \{ Asin(wt - kx)\}}{dx}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf = Acos(wt - kx)  \times  \frac{d \: (wt - kx)}{dx}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf  = Acos( wt- kx) \times {\huge{ (}} \frac{d \: wt}{dx}  -  \frac{d \: kx}{dx} { \huge {)}} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf  = Acos(wt - kx) \times (0 - k) \\  \\   \sf \therefore \:  \frac{dy}{dx}    \sf   \: =  - Ak \: cos(wt - kx)

Similar questions