Math, asked by suzisujay8595, 3 days ago

differentiate y=cos^-1(4cos^3x-3cosx) wrt x

Answers

Answered by mathdude500
12

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y =  {cos}^{ - 1}[ 4{cos}^{3}x - 3cosx]

 \red{\large\underline{\sf{To\:Find - }}}

\rm :\longmapsto\:\dfrac{dy}{dx}

 \green{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:y =  {cos}^{ - 1}[ 4{cos}^{3}x - 3cosx]

We know that,

 \purple{\boxed{ \tt{ \:  {4cos}^{3}x - 3cosx = cos3x \: }}}

So, above function can be rewritten as

\rm :\longmapsto\:y =  {cos}^{ - 1}[cosx]

\rm :\longmapsto\:y = 3x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}3x

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x) \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =3 \dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{dy}{dx} =3 \times 1

 \purple{\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} = 3 \: }}}

More to know :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions