Math, asked by Rajpatil95, 9 months ago

Differentiate y=cos^2(x^3)

Answers

Answered by mutasim0911
0

Step-by-step explanation:

y =  { \cos}^{2}( {x}^{3} )  \\  {y}^{.}  =  \frac{d}{dx} ( { \cos }^{2} ({x}^{3})  ) \\  \:  \:  \:  \:  \:  \:  =  \frac{d{ \cos }^{2} ({x}^{3})  }{d \cos( {x}^{3} ) }   \times  \frac{d \cos( {x}^{3})}{d {x}^{3} }  \times  \frac{d {x}^{3} }{dx} \\  \:  \:  \:  \:  \:  \:  =2\cos( {x}^{3})( -  \sin( {x}^{3} )  )\times 3 {x}^{2} \\  \:  \:  \:  \:  \:  \:  =- 2 \cos( {x}^{3} )  \sin( {x}^{3} )  \times 3 {x}^{2}  \\   \:  \:  \:  \:  \:  \:  = -  \sin(2 {x}^{3} )  \times 3 {x}^{2}

  y =   { \cos }^{2} ( {x}^{3} ) \\  \:  \: \:   \:  =  \frac{1}{2} (2 { \cos}^{2} ( {x}^{3})) \\  \:  \: \:   \:   = \frac{1}{2}( \cos(2 {x}^{3} )  + 1) \\  {y}^{.}  =  \frac{1}{2} ( \frac{d}{dx}  \cos(2 {x}^{3} )  +  \frac{d}{dx} 1) \\ \: \: \: \: \: =  \frac{1}{2} (  - \sin(2 {x}^{3} )  \times 2 \times 3 {x}^{2}  + 0) \\ \:  \: \:   \: =  -  \sin(2 {x}^{3} )  \times 3 {x}^{2}

Similar questions