Math, asked by vasu934, 5 months ago

differentiate y = cos x ÷ x^3​

Answers

Answered by mokshaa23
1

Answer:

\frac{-xsinx-cosx}{x^4}

Step-by-step explanation:

y = \frac{cosx}{x^3}

by applying u/v rule

\frac{d}{dx} (u/v)=\frac{v\frac{du}{dx}-u\frac{dv}{dx}  }{v^2}

d/dx=(cos x/x³)= x³d/dx(cosx) - cosx d/dx(x³)/(x³)²

                       = x³-sinx-cos x x²/x^6

                       =\frac{-x^3sinx-cosx x^2}{x^6}

taking x² common

                     =\frac{-xsinx-cosx}{x^4}

Similar questions