Math, asked by mantudas80890, 1 year ago

Differentiate. y=cotx to the power sinx + tan x to the power cos x​

Answers

Answered by ashutosh237549
0

Answer:

d(sinx)

=cosx

\displaystyle\frac{{{d}{\left( \cos{{x}}\right)}}}{{\left.{d}{x}\right.}}=- \sin{{x}}

dx

d(cosx)

=−sinx

\displaystyle\frac{{{d}{\left( \tan{{x}}\right)}}}{{{\left.{d}{x}\right.}}}={{\sec}^{2}{x}}

dx

d(tanx)

=sec

2

x

Explore animations of these functions with their derivatives here:

Differentiation Interactive Applet - trigonometric functions.

In words, we would say:

The derivative of sin x is cos x,

The derivative of cos x is −sin x (note the negative sign!) and

The derivative of tan x is sec2x.

Now, if u = f(x) is a function of x, then by using the chain rule, we have:

\displaystyle\frac{{{d}{\left( \sin{{u}}\right)}}}{{{\left.{d}{x}\right.}}}= \cos{{u}}\frac{{{d}{u}}}{{{\left.{d}{x}\right.}}}

dx

d(sinu)

=cosu

dx

du

\displaystyle\frac{{{d}{\left( \cos{{u}}\right)}}}{{\left.{d}{x}\right.}}=- \sin{{u}}\frac{{{d}{u}}}{{{\left.{d}{x}\right.}}}

dx

d(cosu)

=−sinu

dx

du

\displaystyle\frac{{{d}{\left( \tan{{u}}\right)}}}{{{\left.{d}{x}\right.}}}={{\sec}^{2}{u}}\frac{{{d}{u}}}{{{\left.{d}{x}\right.}}}

dx

d(tanu)

=sec

2

u

dx

du

Example 1

Differentiate \displaystyle{y}= \sin{{\left({x}^{2}+{3}\right)}}y=sin(x

2

+3).

Answer

First, let: \displaystyle{u}={x}^{2}+{3}u=x

2

+3 and so \displaystyle{y}= \sin{{u}}y=sinu.

We have:

\displaystyle\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=\frac{{{\left.{d}{y}\right.}}}{{{d}{u}}}\frac{{{d}{u}}}{{{\left.{d}{x}\right.}}}

dx

dy

=

du

dy

dx

du

\displaystyle= \cos{{u}}\frac{{{d}{u}}}{{{\left.{d}{x}\right.}}}=cosu

dx

du

\displaystyle= \cos{{\left({x}^{2}+{3}\right)}}\frac{{{d}{\left({x}^{2}+{3}\right)}}}{{{\left.{d}{x}\right.}}}=cos(x

2

+3)

dx

d(x

2

+3)

\displaystyle={2}{x}\ \cos{{\left({x}^{2}+{3}\right)}}=2x cos(x

2

+3)IMPORTANT:

cos x2 + 3

does not equal

cos(x2 + 3).

The brackets make a big difference. Many students have trouble with this.

Here are the graphs of y = cos x2 + 3 (in green) and y = cos(x2 + 3) (shown in blue).

The first one, y = cos x2 + 3, or y = (cos x2) + 3, means take the curve y = cos x2 and move it up by \displaystyle{3}3 units.

Graph y = cos(x^2+3)

The second one, y = cos(x2 + 3), means find the value (x2 + 3) first, then find the cosine of the result.

They are quite different!

Graph y = cos(x^2+3)

Similar questions