Math, asked by vsmp, 1 year ago

differentiate y=e^secx
I'll mark u as brainliest
ASAP ANSWER

Answers

Answered by Swarup1998
2

Solution :

Given, y = \mathrm{e^{secx}}

Differentiating both sides w.r.t. x, we get

\mathrm{\frac{dy}{dx}=\frac{d}{dx}(e^{secx})}

\mathrm{=e^{secx}\frac{d}{dx}(secx)}

\mathrm{=e^{secx}\:secx\:tanx}

\to \boxed{\mathrm{\frac{dy}{dx}=e^{secx}\:secx\:tanx}}

which is the required differentiation.

Rule :

\mathrm{\frac{d}{dx}e^{g(x)}=e^{g(x)}\:g'(x)} ,

where \mathrm{g'(x)=\frac{d}{dx}g(x)}

Similar questions