Math, asked by aryan1875, 15 days ago

Differentiate
Y= sec(tan(x^1/2))

Answers

Answered by DEBOBROTABHATTACHARY
0

Y= sec(tan(x^1/2))

dY/dx = d/dx{sec(tan(x^1/2))}

= sec(tan(x^1/2)).tan(tan(x^1/2)).d/dx(tan(x^1/2))

= sec(tan(x^1/2)).tan(tan(x^1/2)).sec^2(x^1/2). d/dx(x^1/2)

= sec(tan(x^1/2)).tan(tan(x^1/2)).sec^2(x^1/2). 1/(2√x) (ans.)

Answered by sandy1816
0

y = sec(tan \sqrt{x} ) \\  \\  \frac{dy}{dx}  = sec(tan \sqrt{x} )tan(tan \sqrt{x} ) \frac{d}{dx} tan \sqrt{x}  \\  \\  \frac{dy}{dx}  = sec(tan \sqrt{x} )tan(tan \sqrt{x} ) {sec}^{2}  \sqrt{x}  \frac{d}{dx}  \sqrt{x}  \\  \\  \frac{dy}{dx}  = sec(tan \sqrt{x} )tan(tan \sqrt{x} ) {sec}^{2}  \sqrt{x}  \frac{1}{2 \sqrt{x} }

Similar questions