Math, asked by muhammedsahal094, 8 months ago

differentiate Y=sin^-1(2x/1+x^2)

Answers

Answered by Anonymous
4

 \bf \huge \underline \green{answer}

 \bf \blue {y =  { \sin }^{ - 1} ( \frac{2x}{1 +  {2x}^{2} } )}

 \bf{putting \: x \:  =  \: tan \:  \theta}

 \bf \red{y =  {sin}^{ - 1} ( \frac{2x}{1 +  {x}^{2} } )}

 \bf \red{y =  {sin}^{ - 1} ( \frac{2 + tan \:  \theta}{1 +  {tan}^{2} \theta } )}

 \bf \red{y =  {sin}^{ - 1} (sin \: 2 \:  \theta)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \pink{({since \: sin \: 2  \:  \theta =  \frac{2 \: tan \:  \theta}{1 +  {tan}^{2}  \theta} )}}

 \bf \: y = 2 \:  \theta

Putting value of theta=tan^-1x.

 \bf \red{y = 2 {tan}^{ - 1} x} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \fbox \pink{ \: sin \: x = tan \:  \theta} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \bf \pink{\therefore \:  {tan}^{ - 1}x =  \theta }}

Differentiating both sides w.r.t.x.

 \bf \purple{ \frac{d(y)}{dx}  = \frac{d(2 \:  {tan}^{ - 1} x)}{dx}  }

\bf \purple{ \frac{dy}{dx}  = 2\frac{d( {tan}^{ - 1} x)}{dx} }

\bf \purple{ \frac{dy}{dx}  =2( \frac{1}{1 +  {x}^{2} } )} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \green{(( {tan}^{ - 1} x) =  \frac{1}{1 +  {x}^{2} } )}

 \bf \huge \pink{ \frac{dy}{dx}  =  \frac{2}{1 +  {x}^{2} }}

Answered by BrainlyIAS
3

Answer

dy/dx = 2/1+x²

Given

\bullet \;\; \rm y=sin^{-1}\bigg( \dfrac{2x}{1+x^2}\bigg)

To Find

\bullet \;\; \rm \dfrac{dy}{dx}

Solution

\rm y=sin^{-1}\bigg(\dfrac{2x}{1+x^2}\bigg)

\boxed{\begin{minipage}{4cm}$ \rm Let,x=tan\ \theta\ \\\\\rightarrow \theta=tan^{-1}x...(1)  $\end{minipage}}

On sub. this in main eq. , we get ,

\implies \rm y=sin^{-1}\bigg(\dfrac{2\ tan\theta }{1+tan^2\theta}\bigg)

\boxed{\begin{minipage}{3.5cm} \rm we\ know\ that,\\\\sin\ 2\theta=\dfrac{2\ tan\theta}{1+tan^2\theta}\end{minipage}}

\implies \rm y=sin^{-1}(sin\ 2\theta)\\\\\implies \rm y=2\theta\\\\\implies \rm y=2(tan^{-1}x)\ \; [\; From\ (1)\ ]\\\\\implies \rm y=2\ tan^{-1}x

On differentiating with respect to x on both sides , we get ,

\implies \rm \dfrac{dy}{dx}=\dfrac{d}{dx}(2\ tan^{-1}x)\\\\\implies \rm \dfrac{dy}{dx}=2\dfrac{d}{dx}(tan^{-1}x)

\boxed{\rm Since,\rm \dfrac{d}{dx}(tan^{-1}x)=\dfrac{1}{1+x^2}}

\implies \rm \dfrac{dy}{dx}=2\bigg( \dfrac{1}{1+x^2}\bigg)\\\\\implies \rm \dfrac{dy}{dx}=\dfrac{2}{1+x^2}

Similar questions