differentiate y=sin-¹x+sin-¹√1-x²
Answers
Answer:
If y = sin⁻¹ x + sin⁻¹ √ (1 – x²), then how do you find dy/dx?
y=sin^-1(x)+sin^-1√(1-x^2).
Let sin^-1(x)=A. , then x= sinA
y= A+ sin^-1√(1-sin^2 A)
y= A + sin^-1(cosA).
or. y=A+sin^-1{sin(π/2-A)}.
or. y = A +π/2 -A
or. y= π/2.
or. dy/dx = 0. Answer.
Second -Method:-
y=sin^-1(x)+sin^-1√(1-x^2).
Formula. sin^-1(x)+sin^-1(y)=sin^-1{x.√(1-y^2)+y.√(1-x^2)}.
y=sin^-1{x.√(1–1+x^2)+√(1-x^2).√(1-x^2)}.
y = sin^-1{x.x+(1-x^2)}.
y= sin^-1(x^2+1-x^2)
y = sin ^-1(1)
y= π/2
dy/dx = 0. Answer.
Answer:
y=sin^-1(x)+sin^-1√(1-x^2).
Let sin^-1(x)=A. , then x= sinA
y= A+ sin^-1√(1-sin^2 A)
y= A + sin^-1(cosA).
or. y=A+sin^-1{sin(π/2-A)}.
or. y = A +π/2 -A
or. y= π/2.
or. dy/dx = 0. Answer.
Second -Method:-
y=sin^-1(x)+sin^-1√(1-x^2).
Formula. sin^-1(x)+sin^-1(y)=sin^-1{x.√(1-y^2)+y.√(1-x^2)}.
y=sin^-1{x.√(1–1+x^2)+√(1-x^2).√(1-x^2)}.
y = sin^-1{x.x+(1-x^2)}.
y= sin^-1(x^2+1-x^2)
y = sin ^-1(1)
y= π/2
dy/dx = 0. Answer.
Step-by-step explanation:
p please mark in Brainlist